
Correctness is a key problem at every stage of data science projects: completing an entire analysis without a 
serious error at some stage is surprisingly hard. Even errors that reverse or completely invalidate the analysis can 
be hard to detect. Test-Driven Data Analysis  (TDDA) attempts to identify, reduce, and aid correction of such 
errors. A core tool that we use in TDDA is Automatic Constraint Discovery and Verification, the focus of this paper. 

Automatic Constraint Generation 

Constraints constitute a powerful mechanism for precisely describing properties we expect of data. There are 
typically many things we know should be true for any source of data and in principle we could write these down 
and use them as consistency checks for our processing. This is true for intermediates and output datasets as well 
as input datasets. In practice, manually determining and capturing constraints is time consuming and is likely to 
result in rather patchy coverage. The key breakthrough with TDDA’s constraint discovery process is that 
constraints are produced algorithmically from the data. 
 

Data Verification with Constraints 

Given a set of constraints for each dataset, we can use a verification process to check that everything is as it 
should be at each stage of our processing or analysis. Ideally, verification should be carried out automatically and 
monitored to detect problems as they arise, feeding to a mechanism for investigation and correction or other 
handling. 
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The Constraint Generation and Verification Cycle 

 
GENERATION. As described above, the first stage is normally to run the generation process on one or more 
initial datasets. If these are believed to contain bad data items, we call this constraint inference; otherwise, we 
call it constraint discovery. Although the resulting constraints can be used immediately to verify other data, 
where possible the practitioner should first examine the constraints produced to see whether they contain 
anything unexpected or—just as importantly—fail to include something that was expected. If, for example, 
the suggested minimum and maximum ages (for humans) produced by discovery were, respectively, –38 and 
17,031, this would be a clear indication that there were invalid ages in the generation data, which should 
probably be corrected or excluded. Conversely, if the constraint generation process did not result in a 
constraint saying a CustomerID must be non-null, this would indicate that there were records with no 
CustomerID in the development data, which might well be a serious problem. When constraint inference is 
used, the constraints might prohibit valid data, in which case they should be relaxed. Ordinarily, the results 
of constraint generation are written to a JSON file, which can be read by the verification process and used to 
verify subsequent datasets. 

ADAPTATION. As a result of looking at the output, the practitioner will usually decide to change the values 
of some constraints, to remove others, and to add still others that were not satisfied by the data, but which 
should have been. There are two main ways to do this: one is simply to edit the constraints by hand; the 
other is to remove (or correct) the bad data that caused suboptimal constraints to be produced.  Often a 1

combination of both will be used. A third approach is not to bother with this stage in the first place and 
simply to handle failing constraints as they occur. Such an approach can be valid, but is not really capable of 
handling situations in which a desirable constraint was not discovered as a result of problems with the initial 
data used. To that extent, failure to examine the outputs of discovery can dilute the potency of the approach. 

VALIDATION. The process of adapting constraints is part of a larger process of validating the constraints. In 
many cases a further level of validation is carried out by verifying other data using the same constraints, and 
checking that the system of constraints is both catching bad data and letting good data through. 

VERIFICATION. Once a set of constraints has been accepted, the idea is to use them to verify newly arriving 
or newly produced data. Automating the verification will tend to reduce the scope for omission, variation, 
and human error. Depending on the nature of the data being used, in some cases a new dataset being verified 
will overlap with data previously verified. In these case, it may be desirable to prevent records or values that 
have previously been flagged as bad from being reported again. We have developed a system for tracking 
records that have previously failed constraints, with the option of suppressing warnings about those in the 
future. This includes controls over how to handle records that are bad once, then get corrected, then go bad 
again. 

 In some cases, it would also be possible to add/modify data specifically to cause a constraint to get generated with a  particular value, but 1

this would be more unusual and has some obvious dangers.
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MONITORING & ALERTING. If verification is automated, there needs to be some kind of monitoring and 
alerting mechanism for data that fails constraints. Internally, we use a mixture of systems for this, depending 
on the style, granularity, and nature of the data feeds and analytical processes. Often, different constraints 
have different levels of importance, so it may be that a range of levels of alerting is appropriate. 

CONSTRAINT REFINEMENT. In a typical deployment, it will be useful to refine the constraints over time as 
part of monitoring and responding to failures. As more verifications are performed, it is often necessary to 
relax some constraints, as a broader range of data is processed. For example, previously unseen, but valid 
categories may appear, as may valid numeric values that the constraints classify as “out-of-range”. Ideally, 
however, over time data and processes improve, so that constraints that would not have been useful on the 
data as it was during the initial discovery phase now become workable. (For example, perhaps there were 
missing values in the early days, but data capture has improved to the point that these are now rare or non-
existent.) For this reason, it is useful to re-run the discovery process periodically on more recent data to see 
whether new constraints are viable. In this way, rather than constraints only ever being relaxed, they can 
sometimes be tightened, or new constraints can be added. We are also considering supporting constraints 
that are true only over subsets of the data (e.g. apply this constraint only to data after some date, or to all 
data except records from a particular site), which is a potentially powerful extension. 

Generation from Good Data vs. Generation from Bad Data: Discovery vs. Inference 

In its simplest form, the algorithmic constraint 
generation process in TDDA assumes that the 
example datasets provided to it represent “good” 
data. We refer to this as constraint discovery, as the 
system works to characterise the assumed good data. 
When used in this mode, the only constraints 
generated will be those that are completely satisfied 
by the development data used, and verification of 
that development data with the discovered 
constraints is guaranteed to succeed.  When run on a 2

different dataset, of course, some constraints may 
fail, and it is detecting such situations that is our 
primary goal. 

When we do not assume that the development data 
represent only good data, we call the constraint 
generation process constraint inference. This process 
is more powerful but obviously occasionally 
generates inappropriate constraints, as the bad data 
values are not provided to the algorithm. After 
constraint inference has been performed, in general a 
verification over the development data will result in 
some records and values being marked as bad (i.e., 
failing the constraints). As a result, constraint 
inference can not only find useful constraints for 
verifying new data, but can also find potentially bad 
data without any explicit guidance. 

  This is broadly true. In fact, if time/date-based fields are used, and constraints are generated on how far in the future/past they are 2
allowed to be, they may fail if run at a later time. However, an “as at” parameter can be provided to specify that they verification should be 
perform as at a nominated time, in which case, such constraints should also pass.
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✘
{ 

C1: Age ≥ 0 
C2: ID is not null 
… 

}

BAD DATA

{ 
C1: Age ≥ 0 
C2: ID is not null 
… 

}

✔
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When constraints fail, there are several options for how much detail is reported, including producing summary 
statistics about which constraints failed and how often, which individual values in which records failed, and 
which records and fields contained any failures. Importantly, the JSON file format used by TDDA is shared 
across a number of different implementations, currently including Pandas DataFrames, CSV Files, relational 
databases (currently PostgreSQL, MySQL, and SQLite), document collections in MongoDB, and datasets from 
our own Miró software. Thus constraints can be discovered on data in one format and used to verify data in 
another. 
 
Getting the Most Out of Constraints 

In addition to using constraints for validation in production 
processes, and to check data feeds, we find the constraint generation 
process to be useful from the first stages of data exploration. The 
constraints reveal a wealth of information about the shape of data, 
possible problems with its health (either from source, or resulting 
from imperfect encoding-transmission and decoding). It is also 
valuable to realise that it is not only input data that the process 
should be applied to, but also results datasets and intermediate 
datasets. This is useful not only because the output from one stage 
of processing is usually the input to another, but also because 
constraints can usefully identify errors in our own processing. 

We can leverage the constraints framework further by creating new 
fields in our data or new summary datasets that encapsulate 
properties we know should be true of the data but which are not 
amenable (at present) to automatic discovery. The kind of 
constraints that are generated automatically, and which can be 
represented in the constraints framework, are shown in the box. 

Examples of further constraints we might want to force to be included through suitable definition of new 
columns or aggregates might include: 

• A set of percentage columns that should sum to 100% (allowing for rounding errors) 
• if-then consistency checks such as if day = “Sunday”, then StartTime must be between 14:00 and 17:00. 
• Aggregating transaction totals by day and asserting that the total should not be zero for any day, or perhaps 

for any branch for any day. 
• Splitting a structured string into parts and allowing constraint generation to operate on each part. 
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KINDS OF CONSTRAINTS 

SINGLE FIELD 

TYPE:	 	   Age is integer 
MIN & MAX: 	   0 ≤ Age  ≤ 120 

NULLS: 	 	   No nulls in CID 
DUPLICATES: 	   No duplicates in CID 

ALLOWED VALUES:  Insured in {“Y”, “N”} 
PATTERNS:	   UUID ~ [0-9a-f\-]{20} 

FIELD PAIRS 

SEQUENCING:   StartDate < EndDate 

FOREIGN KEY RELATIONS 

Every value in Orders.PartID must also exist 
in the field PartID in table MasterPartsList .
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Examples of Constraint Verification in Action 
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SURVEY DUPLICATION

An online service allocated a “unique” 
identifier to each record in a data feed 

comprising multiple sources. 
Occasionally, the same ID appeared 

more than once in the feed, sometimes 
indicating duplicate records (which is 

bad) and sometimes attached to 
different records (which is worse). 

TDDA identified these issues, and led 
to a redesign of the allocation process 

which ultimately eliminated the 
duplicate records and IDs, and thus 

avoided double counting and 
collisions.

THE WHOLE AEROPLANE?

What is “plausible” cost for air 
tickets? While a typical flight might be 
in the £50-£2,000 range, a booking for 
multiple passengers in first class can 

potentially be several tens of 
thousands of pounds. But not 

£450,000,000.
 Constraint inference was able to 

identify highly outlying fares, which 
in many cases resulted from currency 

conversion errors, leading to an 
increase in the fidelity of data 

gathered.

NULL-LAND & NAMIBIA

There is an area of sea in the Gulf of 
Guinea whose coordinates are 0ºN, 

0ºW. Although there is no land there, 
a remarkable amount of latitude-

longitude data geolocates to this area, 
which is affectionately known as 
“Null-land”. This usually results 

from mapping nulls (missing values) 
to zero. Similarly, when two-letter 
country codes are used, Namibia is 
often over-represented, because NA 

used by systems like Pandas as a null 
marker. TDDA can help spot both of 

these problems when they arise.

WHEN DID THAT HAPPEN?

There is perhaps no source of data as 
prone to errors as dates. Does a 
timestamp represent time in the 

Cloud-based data centre, time for the 
user (who could be based anywhere), 
or something else?Does it include a 
daylight savings adjustment? If it 

does, is that DST at the time of 
recording, at the time of the event, or 
as of now? TDDA cannot necessarily 
answer these questions, but can often 
highlight when and where there are 

inconsistencies that need to be 
addressed.

SPIKES IN THE DATA

Often there are genuine spikes in data, 
reflecting common prices, popular 

items, or majority choices.
But when there are spikes at “special” 
values, extra attention is warranted.

 0, 99, –1, 65535, empty strings, cities 
called “NULL” / “NA”, and

midnight at the start of 1st January 
1970 are all examples of this.

In some cases, TDDA can identify 
suspicious spikes automatically, and it 
can always be instructed to flag them.

DATA TRANSFER

A standard way of checking that data 
has been transmitted accurately is 
with checksums or hashes, but this 

really only checks that the 
transmission was OK. If constraints 

are verified (and perhaps even 
generated) in source and receiving 

systems, we can have more confidence 
that meaning has been preserved.

BACKWARDS IN TIME

A website collected surveys after 
visitors had booked through a partner 

site. The surveys included the time 
between the leaving for the partner 
site and returning. Sometimes this 
time was negative! Investigation 
showed several causes, including 

synchronisation issues, inconsistent 
timezone handling and some bot 

activity. TDDA identified these out-
of-sequence timestamps, allowing 

diagnosis and rectification/mitigation 
of the issues.

STRUCTURED STRINGS

A data feed included string identifiers 
with substructure separated by 

dashes. Unfortunately, sometimes, the 
components themselves included 

dashes, which made splitting out the 
components ambiguous and error-

prone. Constraint discovery generated 
one regular expression pattern that 

was matched by all the “bad” 
examples, and several others for the 
“bad” identifiers, allowing the bad 

examples to be fixed.

SAVED BY THE METADATA

Even the humble file includes various 
sources of metadata—filename, 

location, timestamps, size etc. In some 
cases, we know what the relationship 
between that metadata and the data in 
the file should be. TDDA can be used 
to verify the consistency between the 

data and metadata. We often take 
advantage of this when working with 

flat files or JSON files from web 
services like Amazon S3, especially in 

the fairly common case in which 
further metadata is encoded in the 

filename.
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