
Correctness is a key problem at every stage of data science projects: completing an entire analysis without a
serious error at some stage is surprisingly hard. Even errors that reverse or completely invalidate the analysis can
be hard to detect. Test-Driven Data Analysis (TDDA) attempts to identify, reduce, and aid correction of such
errors. A core tool that we use in TDDA is Automatic Constraint Discovery and Verification, the focus of this paper.

Automatic Constraint Generation

Constraints constitute a powerful mechanism for precisely describing properties we expect of data. There are
typically many things we know should be true for any source of data and in principle we could write these down
and use them as consistency checks for our processing. This is true for intermediates and output datasets as well
as input datasets. In practice, manually determining and capturing constraints is time consuming and is likely to
result in rather patchy coverage. The key breakthrough with TDDA’s constraint discovery process is that
constraints are produced algorithmically from the data.

Data Verification with Constraints

Given a set of constraints for each dataset, we can use a verification process to check that everything is as it
should be at each stage of our processing or analysis. Ideally, verification should be carried out automatically and
monitored to detect problems as they arise, feeding to a mechanism for investigation and correction or other
handling.

 

Copyright © Stochastic Solutions Limited 2017 Version 1.0 • 6 October 2017 http://www.StochasticSolutions.com • @StochasticSolns

AUTOMATIC CONSTRAINT GENERATION AND VERIFICATION
Test-Driven Data Analysis Series • Stochastic Solutions Limited

{
C1: …
C2: …
C3: …

 ⋮
}

OPERATIONAL  
DATA

CONSTRAINTS FAILING DATA

MONITORING
REPORT

ALERTS

AUTOMATIC
VERIFICATION

{
C1: Age ≥ 0
C2: ID is not null
C3: CardNumber ~
 DDDD DDDD DDDD DDDD

 ⋮
}

AUTOMATICALLY-GENERATED
CONSTRAINTS

DEVELOPMENT  
DATA

ALGORITHMIC
CONSTRAINT
GENERATION

http://www.stochasticsolutions.com
http://twitter.com/stochasticsolns

The Constraint Generation and Verification Cycle 

GENERATION. As described above, the first stage is normally to run the generation process on one or more
initial datasets. If these are believed to contain bad data items, we call this constraint inference; otherwise, we
call it constraint discovery. Although the resulting constraints can be used immediately to verify other data,
where possible the practitioner should first examine the constraints produced to see whether they contain
anything unexpected or—just as importantly—fail to include something that was expected. If, for example,
the suggested minimum and maximum ages (for humans) produced by discovery were, respectively, –38 and
17,031, this would be a clear indication that there were invalid ages in the generation data, which should
probably be corrected or excluded. Conversely, if the constraint generation process did not result in a
constraint saying a CustomerID must be non-null, this would indicate that there were records with no
CustomerID in the development data, which might well be a serious problem. When constraint inference is
used, the constraints might prohibit valid data, in which case they should be relaxed. Ordinarily, the results
of constraint generation are written to a JSON file, which can be read by the verification process and used to
verify subsequent datasets.

ADAPTATION. As a result of looking at the output, the practitioner will usually decide to change the values
of some constraints, to remove others, and to add still others that were not satisfied by the data, but which
should have been. There are two main ways to do this: one is simply to edit the constraints by hand; the
other is to remove (or correct) the bad data that caused suboptimal constraints to be produced. Often a 1

combination of both will be used. A third approach is not to bother with this stage in the first place and
simply to handle failing constraints as they occur. Such an approach can be valid, but is not really capable of
handling situations in which a desirable constraint was not discovered as a result of problems with the initial
data used. To that extent, failure to examine the outputs of discovery can dilute the potency of the approach.

VALIDATION. The process of adapting constraints is part of a larger process of validating the constraints. In
many cases a further level of validation is carried out by verifying other data using the same constraints, and
checking that the system of constraints is both catching bad data and letting good data through.

VERIFICATION. Once a set of constraints has been accepted, the idea is to use them to verify newly arriving
or newly produced data. Automating the verification will tend to reduce the scope for omission, variation,
and human error. Depending on the nature of the data being used, in some cases a new dataset being verified
will overlap with data previously verified. In these case, it may be desirable to prevent records or values that
have previously been flagged as bad from being reported again. We have developed a system for tracking
records that have previously failed constraints, with the option of suppressing warnings about those in the
future. This includes controls over how to handle records that are bad once, then get corrected, then go bad
again.

 In some cases, it would also be possible to add/modify data specifically to cause a constraint to get generated with a particular value, but 1

this would be more unusual and has some obvious dangers.

Copyright © Stochastic Solutions Limited 2017 Version 1.0 • 6 October 2017 http://www.StochasticSolutions.com • @StochasticSolns

DEVELOPMENT USE

GENERATE ADAPT VALIDATE VERIFY MONITOR REFINE

http://www.stochasticsolutions.com
http://twitter.com/stochasticsolns

MONITORING & ALERTING. If verification is automated, there needs to be some kind of monitoring and
alerting mechanism for data that fails constraints. Internally, we use a mixture of systems for this, depending
on the style, granularity, and nature of the data feeds and analytical processes. Often, different constraints
have different levels of importance, so it may be that a range of levels of alerting is appropriate.

CONSTRAINT REFINEMENT. In a typical deployment, it will be useful to refine the constraints over time as
part of monitoring and responding to failures. As more verifications are performed, it is often necessary to
relax some constraints, as a broader range of data is processed. For example, previously unseen, but valid
categories may appear, as may valid numeric values that the constraints classify as “out-of-range”. Ideally,
however, over time data and processes improve, so that constraints that would not have been useful on the
data as it was during the initial discovery phase now become workable. (For example, perhaps there were
missing values in the early days, but data capture has improved to the point that these are now rare or non-
existent.) For this reason, it is useful to re-run the discovery process periodically on more recent data to see
whether new constraints are viable. In this way, rather than constraints only ever being relaxed, they can
sometimes be tightened, or new constraints can be added. We are also considering supporting constraints
that are true only over subsets of the data (e.g. apply this constraint only to data after some date, or to all
data except records from a particular site), which is a potentially powerful extension.

Generation from Good Data vs. Generation from Bad Data: Discovery vs. Inference

In its simplest form, the algorithmic constraint
generation process in TDDA assumes that the
example datasets provided to it represent “good”
data. We refer to this as constraint discovery, as the
system works to characterise the assumed good data.
When used in this mode, the only constraints
generated will be those that are completely satisfied
by the development data used, and verification of
that development data with the discovered
constraints is guaranteed to succeed. When run on a 2

different dataset, of course, some constraints may
fail, and it is detecting such situations that is our
primary goal.

When we do not assume that the development data
represent only good data, we call the constraint
generation process constraint inference. This process
is more powerful but obviously occasionally
generates inappropriate constraints, as the bad data
values are not provided to the algorithm. After
constraint inference has been performed, in general a
verification over the development data will result in
some records and values being marked as bad (i.e.,
failing the constraints). As a result, constraint
inference can not only find useful constraints for
verifying new data, but can also find potentially bad
data without any explicit guidance.

 This is broadly true. In fact, if time/date-based fields are used, and constraints are generated on how far in the future/past they are 2
allowed to be, they may fail if run at a later time. However, an “as at” parameter can be provided to specify that they verification should be
perform as at a nominated time, in which case, such constraints should also pass.

Copyright © Stochastic Solutions Limited 2017 Version 1.0 • 6 October 2017 http://www.StochasticSolutions.com • @StochasticSolns

SELF-VERIFICATION AFTER INFERENCE

✘
{

C1: Age ≥ 0
C2: ID is not null
…

}

BAD DATA

{
C1: Age ≥ 0
C2: ID is not null
…

}

✔

SELF-VERIFICATION AFTER DISCOVERY

http://www.stochasticsolutions.com
http://twitter.com/stochasticsolns

When constraints fail, there are several options for how much detail is reported, including producing summary
statistics about which constraints failed and how often, which individual values in which records failed, and
which records and fields contained any failures. Importantly, the JSON file format used by TDDA is shared
across a number of different implementations, currently including Pandas DataFrames, CSV Files, relational
databases (currently PostgreSQL, MySQL, and SQLite), document collections in MongoDB, and datasets from
our own Miró software. Thus constraints can be discovered on data in one format and used to verify data in
another.

Getting the Most Out of Constraints

In addition to using constraints for validation in production
processes, and to check data feeds, we find the constraint generation
process to be useful from the first stages of data exploration. The
constraints reveal a wealth of information about the shape of data,
possible problems with its health (either from source, or resulting
from imperfect encoding-transmission and decoding). It is also
valuable to realise that it is not only input data that the process
should be applied to, but also results datasets and intermediate
datasets. This is useful not only because the output from one stage
of processing is usually the input to another, but also because
constraints can usefully identify errors in our own processing.

We can leverage the constraints framework further by creating new
fields in our data or new summary datasets that encapsulate
properties we know should be true of the data but which are not
amenable (at present) to automatic discovery. The kind of
constraints that are generated automatically, and which can be
represented in the constraints framework, are shown in the box.

Examples of further constraints we might want to force to be included through suitable definition of new
columns or aggregates might include:

• A set of percentage columns that should sum to 100% (allowing for rounding errors)
• if-then consistency checks such as if day = “Sunday”, then StartTime must be between 14:00 and 17:00.
• Aggregating transaction totals by day and asserting that the total should not be zero for any day, or perhaps

for any branch for any day.
• Splitting a structured string into parts and allowing constraint generation to operate on each part.

Copyright © Stochastic Solutions Limited 2017 Version 1.0 • 6 October 2017 http://www.StochasticSolutions.com • @StochasticSolns

KINDS OF CONSTRAINTS

SINGLE FIELD

TYPE:	 	 Age is integer
MIN & MAX: 	 0 ≤ Age ≤ 120

NULLS: 	 	 No nulls in CID
DUPLICATES: 	 No duplicates in CID

ALLOWED VALUES: Insured in {“Y”, “N”}
PATTERNS:	 UUID ~ [0-9a-f\-]{20}

FIELD PAIRS

SEQUENCING: StartDate < EndDate

FOREIGN KEY RELATIONS

Every value in Orders.PartID must also exist
in the field PartID in table MasterPartsList .

http://www.stochasticsolutions.com
http://twitter.com/stochasticsolns

Examples of Constraint Verification in Action

Copyright © Stochastic Solutions Limited 2017 Version 1.0 • 6 October 2017 http://www.StochasticSolutions.com • @StochasticSolns

SURVEY DUPLICATION

An online service allocated a “unique”
identifier to each record in a data feed

comprising multiple sources.
Occasionally, the same ID appeared

more than once in the feed, sometimes
indicating duplicate records (which is

bad) and sometimes attached to
different records (which is worse).

TDDA identified these issues, and led
to a redesign of the allocation process

which ultimately eliminated the
duplicate records and IDs, and thus

avoided double counting and
collisions.

THE WHOLE AEROPLANE?

What is “plausible” cost for air
tickets? While a typical flight might be
in the £50-£2,000 range, a booking for
multiple passengers in first class can

potentially be several tens of
thousands of pounds. But not

£450,000,000.
 Constraint inference was able to

identify highly outlying fares, which
in many cases resulted from currency

conversion errors, leading to an
increase in the fidelity of data

gathered.

NULL-LAND & NAMIBIA

There is an area of sea in the Gulf of
Guinea whose coordinates are 0ºN,

0ºW. Although there is no land there,
a remarkable amount of latitude-

longitude data geolocates to this area,
which is affectionately known as
“Null-land”. This usually results

from mapping nulls (missing values)
to zero. Similarly, when two-letter
country codes are used, Namibia is
often over-represented, because NA

used by systems like Pandas as a null
marker. TDDA can help spot both of

these problems when they arise.

WHEN DID THAT HAPPEN?

There is perhaps no source of data as
prone to errors as dates. Does a
timestamp represent time in the

Cloud-based data centre, time for the
user (who could be based anywhere),
or something else?Does it include a
daylight savings adjustment? If it

does, is that DST at the time of
recording, at the time of the event, or
as of now? TDDA cannot necessarily
answer these questions, but can often
highlight when and where there are

inconsistencies that need to be
addressed.

SPIKES IN THE DATA

Often there are genuine spikes in data,
reflecting common prices, popular

items, or majority choices.
But when there are spikes at “special”
values, extra attention is warranted.

 0, 99, –1, 65535, empty strings, cities
called “NULL” / “NA”, and

midnight at the start of 1st January
1970 are all examples of this.

In some cases, TDDA can identify
suspicious spikes automatically, and it
can always be instructed to flag them.

DATA TRANSFER

A standard way of checking that data
has been transmitted accurately is
with checksums or hashes, but this

really only checks that the
transmission was OK. If constraints

are verified (and perhaps even
generated) in source and receiving

systems, we can have more confidence
that meaning has been preserved.

BACKWARDS IN TIME

A website collected surveys after
visitors had booked through a partner

site. The surveys included the time
between the leaving for the partner
site and returning. Sometimes this
time was negative! Investigation
showed several causes, including

synchronisation issues, inconsistent
timezone handling and some bot

activity. TDDA identified these out-
of-sequence timestamps, allowing

diagnosis and rectification/mitigation
of the issues.

STRUCTURED STRINGS

A data feed included string identifiers
with substructure separated by

dashes. Unfortunately, sometimes, the
components themselves included

dashes, which made splitting out the
components ambiguous and error-

prone. Constraint discovery generated
one regular expression pattern that

was matched by all the “bad”
examples, and several others for the
“bad” identifiers, allowing the bad

examples to be fixed.

SAVED BY THE METADATA

Even the humble file includes various
sources of metadata—filename,

location, timestamps, size etc. In some
cases, we know what the relationship
between that metadata and the data in
the file should be. TDDA can be used
to verify the consistency between the

data and metadata. We often take
advantage of this when working with

flat files or JSON files from web
services like Amazon S3, especially in

the fairly common case in which
further metadata is encoded in the

filename.

http://www.stochasticsolutions.com
http://twitter.com/stochasticsolns

