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Abstract Notational Conventions

This work draws together two natural metaphors: “genetic algorithms” draw inspiraA comprehensive summary of the notation used is given in the appendix, together
tion from natural evolution to attempt to provide a robust, efficient search techniqueyith notes on equivalence relations, which play a rather mdjt in this work. A
and “neural networks” form a crude model of information processing in brains whichfew points, however, deserve early comment.
offer the prospect of training computers to solve tasks by example. Itis very natural
to think of applying the adaptive techniques of genetic algorithms to the problem of
searching the space of neural networks, but doing so is extremely hard, and provid@ée' ghts
the motivation for this work.
For obscure reasons, most workers in the field of neural networks write the weight
It is argued that the key determinant of the success of any particular genetic aftom node: to nodej asw; rather than the more natural;. The latter convention
gorithm is the interaction between the underlying correlations in the search spac, used here, so that products which are conventionally written as matrix-vector
the representation of the space adopted, and the genetic operators used to maittiplications become vector-matrix products.
ulate the representatives of elements in the search space. It is further argued that
genetic algorithms as usually formulated are not ideally suited to “training” neura
networks, and that in order to make significant progress in this area a broadeni
of the standard “schema” analysis is required. Such a generalisation, based on the ) - ) ]
notion of imposing suitable nested sets of equivalence relations over arbitrary seardh'® u+suallno_tat|om+ andZ™ for the positive reals and integers is extendet {o
spaces, is proposed and developed. “Design principles” to help construct gene@@dZq to indicateR™ U {0} andZ™ U {0} respectively.
algorithms for arbitrary problems are suggested in the context of such knowledge . i ) o
of the regularities in the search space as are known. The techniques developed af¢ integers module are conventionally denotet,,. This convention is adhered
applied to a number of problem domains and yield some new insights. to, but whereas the representatiorfof usually used i 0,1,...,n — 1}, it will
be more convenient to represent the zero element bhis is not a serious abuse
Issues of linkage and convergence are also relevant to the application of adapti¢&notation since: (mod») = 0.
genetic techniques to neural network problems. Studies of these are presented.
Existing attempts to apply genetic algorithms are also reviewed in the light OfDefinitions
the non-standard analysis developed, and the prospects for further progress are
discussed.

ealsand Integers

The notatioru = b is used generically to mean Is defined to bé'.

In recognition of the fact that much of this work was carried out on a large, medium-
grained, reconfigurable parallel computer, a study of connection strategies for such
machines is also presented.
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The work in this study draws together two principal themes—the use of neural
networks to perform mappings and the use of genetic algorithms for search. The
ultimate goal is the construction of useful training algorithms for neural networks,
harnessing the power of genetic algorithms to search the space of networks. In
practice, attention is restricted to a familiar sub-class of neural networks which has
received much study, so-called ‘layered, feed-forward networks’. These have the
advantage that a reference training algorithm already exists, in the form of back-
propagation, so that it is possible to gauge the success of alternative genetic training
algorithms.

There are various motivations for attempting to apply the adaptive techniques of
genetic algorithms to network training, and various areas which seem ripe for such
application. Perhaps the most obvious, and certainly the most widely-studied, is
the problem of choosing a suitable network topology. No principled method for
this is currently known, and workers in the field normally restrict themselves to
a tiny region of the space of possible network configurations. Searching the full
space is extremely difficult, and little progress would be expected with conventional
techniques, even where they are capable of being applied.

Additionally, the “standard” training algorithm, back-propagation, while being sig-
nificantly more robust than any competitor developed to date, is not fast, uniformly
successful or even especially accurate. Moreover, it is limited to a very restricted
subset of potentially interesting networks, namely feed-forward networks with dif-
ferentiable activation functions. Training is an optimisation (or search) problem,
and in many ways one for which adaptive genetic approaches might be thought
particularly appropriate, either because of loose biological analogies or because of
the known properties of genetic search. Moreover, a genetic technique offers the
possibility of adapting the topology, activation functions and connection strengths
simultaneously—a highly attractive prospect. The problem of setting parameters
for general training algorithms is also amenable to genetic search.

Conversely, neural networks form an interesting problem domain to tackle with
genetic algorithms because they exhibit many of the features which characterise
hard search problems, and in particular many of the difficulties which most urgently
require further work for the useful development of adaptive search techniques. These
difficulties include representation problems, redundancy, epistasis, noise, high cost
of evaluation and deception. Successful techniques for tackling any of these in the



domain of neural network training are likely to carry over to more general contexts. Bringing together the threads of the earlier ones, chapter seven discusses various
attempts to apply genetic algorithms to neural networks, both those of the author
and of others. It is mainly discursive in nature, commenting upon and analysing
further existing work and discussing possible ways to tackle some of the difficulties

) ) ) ) _involved in genetic training, based on the experience gained in the course of the
Chapter two gives a fairly general introduction to neural networks. The presentation g5jier work.

is not entirely conventional but is appropriate for drawing out some of the subtleties
which will be salient in tackling the problem of their training by genetic algorithms. |, recognition of the fact that much of this work was carried out on a medium-
The discussjon begins broadly, stressing the generality of the training problem, pUtgrainedMIMD computer, the so-called Edinburgh Concurrent Supercomputer, the
is later restricted to the feed-forward networks that form the focus of the bulk of this fjnq) chapter addresses the key question of how best to connect together the different
study. processors in a reconfiguralleaMp machine. While this depends critically on

) ] . ) the particular task performed, a variety of measures can be constructed which give
Chapter three discusses genetic algorithms as usually formulated. As with thejnformation about the strengths and weaknesses of different topologies. The rather
previous chapter, Fhe disgussi(_)n is not entirely standard, but again brings out rathe‘surprising conclusion is that over many such performance measlioéthe config-
naturally some points which will be relevant later. urations in standard use emerge spectacularly poorly. Evidence is presented which

suggests that for many applications highly irregular connection graphs perform very

Having described the techniques separately, chapter four begins the discussion of thg,,ch petter. A variety of search techniques are examined in this context, including
bringing together of genetic and neural techniques, and consists of a fairly extensive, genetic algorithm, and there is some discussion of general permutation problems
survey and critique of work in the field to date. The discussion is up-to-date, and 5ng genetic routes to their solution.

was written after the research in some of the later chapters was carried out, but

provides some insights into the reasons for the research taking the directions thatpe appendix contains a comprehensive guide to the notation used and includes a

were followed. brief description of equivalence relations and the logical conventions adopted here.
Strenuous efforts have been made to adopt a consistent notation throughout the entire

In chapter five, intrinsic parallelism and schemata—the key ideas underpinning our gy though a few symbols are used in different sections for different purposes; the
understanding of genetic algorithms—are examined, and it is found to be possible to4;thor will have failed badly if this ever causes confusion.

extend the standard analysis to cover general representations, equivalence relations

and genetic operators. This has important implications for the application of genetic .

techniques to the problem of training networks, offering the hope of working in more 2 Chronol ogl cal Note

natural representations and perhaps “folding out” some of the redundancy which will

be found to plague these powerful training techniques when applied carelessly.  The work presented here consists of a series of disparate studies around two or three
unifying themes—oprincipally genetic algorithms and neural networks. In trying to

Chapter six comprises a series of studies around the themes of linkage, bias antlinearise” these studies into a coherent stream there are various approaches that

convergence. The term linkage refers to the tendency of some genes to be passed aould be taken. An obvious strategy is to present the work in the order in which it

together under genetic reproduction, and might be expected to be important whenwas undertaken, which has the advantage that the progression of ideas can be seen,

applying genetic techniques to neural networks, but the work in this chapter suggestsand the way in which earlier experiences focus the research is brought out. The

that the mechanisms usually proposed for utilising linkage are too weak to be of very trouble with this approach, however, is that it is hard to provide a commentary on the

much use. Bias in crossover operators is also examined, with perhaps surprisingvork in the light of later research which puts it into better perspective. Moreover,

results, and the familiar problem of premature convergence is discussed. although the path followed at the time seemed reasonably obvious, with hind-sight

1 Organisation



it looks less so even to the author, and the reader might fail to observe it altogethgoroblem. Moreover, | had a growing conviction that the key to extending the analysis
lay in the use of general equivalence relations, but could not quite see how to turn

For these reasons the approach taken here is instead to try to find a logical ordertffis intuition into respectable scientific conclusions.

which to present the material, giving the freedom to comment on earlier research

in the light of later work and allowing greater coherence. It so happens that in thi§\nother area which particularly interested me was that of linkage: 1 could not

case the process of constructing a clear path has involved almost exactly reversidgderstand why this important topic seemed to be so consistently ignored by the

the order in which the research was undertaken. It might be helpful, thereforegenetic algorithms community, since there seemed to be no conclusive research to

to explain the chronological connections between the various pieces of work. Fdihow thatlinkage was not useful. Moreover, | had a strong intuition that linkage was

this description only, the first person will be adopted since the thought processéing to be important in studying neural networks with genetic algorithms, because

involved are by their nature personal to the author. epistasis—the phenomenon whereby groups of genes act in highly non-linear ways
in combination—seemed certain to loom large, and the prospect of allowing groups

My first interest in neural networks grew out of a conversation in a pub with GarettP! co-adapted genes to be preferentially transmitted was highly attractive. This led

Richards, who finally gave me a description of them that appealed to me. Thif0 the other studies in chapter 6.
description forms the basis of the presentation in chapter 2. | already had some ) . . )
interest in genetic algorithms and had been playing around, along with Greg Wilsor}',_he last piece of work to be performed was in fact that presented in chapter 5, which
with very simple sorts of reproductive modeisa Dawkins (1988), and it seemed ' €Very sense forms _the centre of this stud_y: this work pulls together all of _the

natural to try to apply genetic search to the problem of training neural networks. 1{4€as | had been kicking around over a period of two or more years, and brings
was immediately apparent, however, that the “hidden node problem” (which allow$ gemblanpe of coherence_to an otherwise rather idiosyncratic collgcnon of ideas.
arbitrary permutations of be applied to the hidden node labels without affecting thd NiS €xplains why the work is not as fully developed as | would have liked, and why

resulting network) would present a very serious obstacle to progress. At this stagé pave not applied the ideas contained within it more widely in the rest of the studies.

played around with a few “toy” gannets—*gannet” being the term |, among others,'f I had known then, what | believe | know now, the body of this work would look

coined for the combination of genetic algorithms and neural networks—but without/€"Y different.
great success. Some of this work is discussed in chapter 7. | was also interested, at

this stage, in comparing the grand formalism of Holland’s genetic algorithms with

the much simpler evolutionary approaches taken by Dawkins, work which lead to

the study of clustering around optima given in chapter 6.

Meanwhile, Mike Norman had been attempting to use a genetic algorithm to tackle
the “transputer configuration problem”—that of finding a good way of connecting
together transputers in a Meiko Computing Surface. | became involved with this,
and the study grew into the joint collaboration between Dominic Prior, Lyndon
Clarke, Mike and me which forms the bulk of chapter 8.
Hofstadter's Law:

While this was going on | continued to think about the hidden node problem, It always takes longer than you expect,
and became increasingly convinced that the formalism of genetic algorithms was even when you take into account Hofstadter's Law.
inadequate to allow proper application to neural networks. This was reinforced by the— DOUGLAS HOFSTADTER, Godel, Escher, Bach: An Eternal Golden
experience of attempting to use a genetic algorithm for the transputer configuration Braid (1979)
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The field of neural networks is a very broad one, drawing researchers from fields as
diverse as physics and neurology, engineering and psychology, biology and computer
science. Workers from these fields often have quite different perceptions of what
a neural network is, and radically different reasons for studying them. It will be
usefulfirst to describe briefly some of these different view-points, discussing general
features of neural networks, and then to formulate more precisely what will be meant
by the term in the remainder of this study.

1 Perceptions

The neural networks described herein are called by some ‘artificial neural networks’
in order to distinguish them from the ‘real’ neural networks which form brains.
Certainly the inspiration for this computational model is drawn from models of
real brains, but since the discussion here will only ever consider ‘artificial’ neural
networks the qualification will be droppéd.

Perhaps the most obvious interpretation of a neural network is as a software model
of certain poorly understood neurophysiological processes thought to exist in brains.
Brains are known to consist of so&'° neurons, each of which is connected to
perhapsl0* other neurons. Each neuron receives stimulae from other neurons to
which it is connected, and sometimes from external sources, and responds to these
stimulae with a pattern of activity, perhaps the most important feature of which is a
firing rate.

A typical sequence of neural events may be thought of as

1° stimulation of some neurons by an external event (for example, the
appearance of a particular light pattern on the retina);

2° instability during a cascade of activity as stimulated neurons activate
or inhibit activation of other neurons;

3° stabilisation of neural activity.

1 Those who take the ‘strong Al’ position might take issue with the claim that the distinction between ‘real’

and ‘artificial’ neural networks exists at all, but a physics thesis is perhaps not the most suitable place to
get embroiled in such metaphysical considerations, however tempting the prospect.



This provides a crude picture of our understanding of processing in the brain. Thimterest, and the greater the validity of testing models and hypotheses using them.

approach in neural networks research is essentially to model neuraogdsyvhich For physicists, almost the reverse is true, for physics is fundamentally about reduc-
implement simple non-linear functions. Each node is has a number of input anthg systems to their bare essentials. If models with very simple connectivities and
output connections, and associated with each connectiowésght or connection activation functions can produce interesting behaviour, especially if that behaviour

strength. The stimulus oipotential at a node is usually taken to be the sum of the is relatively unaffected by the details of the particular functions and connectivities
products of the outputs from all the nodes connected to the node under consideratiared, then so much the better. For the physicist simplicity is the essence, and the
and the associated connection strengths. The output from this node is then calculat®dre detailed the knowledge of human brains necessary for the construction of
by applying the non-linear function to the input potential. models which exhibit interesting behaviour, the less satisfactory are they.

It will be seen from this description that there is an implicit notion of time in neural From this point of view, one of the great interests in neural networks is their
network models. In the brain, activity gradually builds up, firing rates changing agobustness to damage. In a typical network, information is not localised to any-
the activity in connected nodes varies in analogue fashion. In general, connectiofding like the degree that is typical in conventional computational models: one of
can be either excitatory—in which case activity in one neuron tends to be positiveljhe aims is to avoid so-called ‘grandmother cellShfieja (1989))—single neurons
correlated with activity in the other—or inhibitory, in which case the correlation Which fire in response to one pattern only, causing recognition of that pattern. In
tends to be negative. In network models the activities in nodes are usually updatédrobust network the information is distributed, at least across the weights, but per-

in an iterative manner until the node states stabilise (or fail to stabilise). Thid1aps also through the variety of activation functions used and so forth. This leads
introduces a discrete notion of time. to the possibility of graceful degradation of performance as a parts of a network

are perturbed or damaged. This property is one of the attractions of the subject

The model described allows computation to be performed by designating some &P €ngineers, for it allows the possibility of realising neural networks in silicon
the nodes amput units, and others asutput units. A pattern (stimulus) is applied and being able_ to use many chips produced which contain faults—still a significant
to the network by setting the (output) values of the input nodes. The dynamics dproblem for chip manufacturers.

the network then cause activity to spread through the network until, in a useful net,

the states of the output nodes stabilise and can be read. 2 Traini ng

Thus a neural network can be thought of as a unit which performs computation byn order for it to be useful and interesting, it is necessary to have some control over
translating input patterns into output patterns. This, to some extent, is the view-poifthe mapping that a neural network performs. This is determined in combination

of computer scientists In this sense, the potential range of activities a network cagy the topology of the network, its dynamics, the functions implemented by the
perform can be seen to be the same as the range of activities a Turing machipgdes and the strengths of the connections between the nodes. In some cases these
can undertake: in each case, it is necessary to be able to state the problem in #ig&erminants can be prescribed in such a way that the resulting network is guaranteed
form ‘produce a specified output from a given input’. From a more mathematicako perform a given mapping. Various constructive algorithms exist which build such
perspective, a neural network can be thought of as a device which implemenisetworks (Frean (1989), Mezard & Nadal (1989)), but this is not, in general, the
arbitrary mappings. path followed.

Perhaps the most widely differing perceptions come from physicists and neuroPerhaps the canonical use for a neural network is to perform partially-specified
ogists. The latter group tend to be interested in building complex models of thenappings. A network is “showr”a number of representative input-output (or

brain: for them, the more realistic are the building blocks from which networks are
constructed, and the more neural features which they can combine, the greater i8 #hrghropomorphisms are hard to avoid in this subject, and will recur




“pattern-target”) pairs and the goal is to “train” the network to map the sample 3 A More For mal Description

inputs to their corresponding outputs. An algorithm for altering the network is

employed which tends to cause the network more nearly to implement the desiredit will be convenient to take a neural netwokk to be a system comprising:

mapping as these training patterns are repeatedly presented. This process of training

takes its inspiration from the way people are commonly taught—by example.

The phenomenon whereby networks are able not only to map training data, but also

in some sense to interpolate the map for unseen data, is known as generalisation, and

provides one of the main reasons for interest in the subject. A trivial example would
be a network which classified digitised images as dogs or cats. The hope would be
that after training the network on a representative set of images it would be able to
classify correctly pictures of dogs and cats which were not in the training set. More
powerfully, this way of working offers the possibility of implementing maps which
are not fully known, to perform transformations for which no algorithm is known.

The normal requirement that neural networks be capable of generalisation adds
interest and complexity to the task of training. Without it, given suitable constraints
on the network parameters and an objective function returning a measure of the
performance of the network, training becomes a well-defined optimisation problem,
albeit a hard one. When generalisation is required, the task becomes ill-defined and
still more problematical.

One of the obstructions faced when attempting to produce a network which gen-
eralises is the phenomenonafer-learning. Here, the network learns to map the
training data accurately, but loses the ability to interpolate usefully. A common
interpretation of this is that the network learns the individual characteristics of the
training patterns, and chooses to map them by recognising these characteristics
rather than—as is intended—by extracting general features from the patterns and
classifying them on the basis of these. There is a fine balance to be struck between
the desire to extract as much useful information as possible from the training data
and wishing to avoid over-learning.

1° A setN of nodes,? together with a decomposition function

d: N — P(N)?,

which designates some of the nodesrgsit nodes I and some as
output nodes O. There is no requirement that these be disjoint sets.
Given this decomposition,

N=IUHUO

where thehidden nodes, H, are defined to be those nodes which are
neither input nor output nodes. It is conventional to think of a node
as a simple processing device characterised Bta—its output
state—which is influenced by, and itself influences, the state of other
nodes in the system. This is the model that will be assumed in the
text here. Inthe mathematical presentation, however, the set of nodes
is simply an index set.

In general, annput pattern is presented to a network by specifying
initial states for the input nodes. A specified system of dynamics then
updates the states of the other nodes in the system, and possibly of
the input nodes also, until at some later time the states of the output
nodes have stabilised and autput pattern may be read from these.

In this way, a network associates one output pattern with each input
pattern.

If the node states are real, which is sufficiently general for present
purposes, then a netwafK effectively acts as a function

N :RHI — RIOI

3 Nodes are also sometimes callsglirons or units.



where the notatiopd| is used to indicate the number of elements in
a setA.
2° A connectivity. The connectivity of a network can be viewed as a
function
c:NxN—{0,1}

which is defined by

L,
0,

if nodes is connected to nodg
otherwise.

{
Connections are not necessarily symmettig; (Z ¢;;) and self-
connections are allowed but not required. (A connection from node

to nodej allows node to influence nodg but not the reverse, which
is why connections may be asymmetric.)

Cij

3° AsetWV of weights or connection strengths. There is one weight as-

sociated with each (ordered) pair of connected nodes and the weights
are assumed to be real-valued so that
VieENVjeN: (¢ =1 =
w é{ wij }

= Wij eR)

4° A setV of |N| activation functions. Given the state of every node

and weight in the network thigh activation function is used to update
the state of théth node:

VE{v; : RV x RWl — R |ieN}.

Thus a neural network is conveniently represented as a 5-Nipte (N, d, c, W,

V')—a collection of nodes with some specified decomposition and connectivity, aActivation:
weight associated with each connection and an activation function for each node.

The set of all such networks will be denot@d

It is convenient at this point to make a few more general definitions for neural

networks which will be used later in defining objective functions for the genetic

algorithm. The following definitions all assume a netwokke with nodes
N=IUHUO.

A training set 7, is simply a set of training patterns. A training pattern is a pattern-
target pair as described befo(g, t) e R/l x RI©l. Given such a training pattern, it
is useful to define the network’s errar, for that training pattern. An appropriate
definition for

e: RN x RO — RE

e(t,o) 2 (t; ~

jeo

2
’Uj) .

Finally, theglobal error, £, is defined as the sum of the errors for each patternin a
training set. For a training set with pattern-target pairs this gives

=3 ()’

r=1j€0

2 et v
r=1

4 Hopfield Network

One of the most widely studied categories of neural network models dbkeld
network. Using the notation introduced above, amode Hopfield net can be
defined as follows:

Nodes: I=0=N=Z,; H=¢.

o (1, ifi#],
Connectivity: VieEN VjEN : ¢ =1—0;5 = {07 otherwise.
Starting Weights: wij =Y tgr)tgr) (Hebb Rule)

¢: N xRWI xRV — R
6 = 3 el
i1€EN

{1, if ¢\ + 7, >0,
—1, otherwise.

o) =



From this it can be seen that:

the node states arel.

The Hopfield net has no hidden units: every node acts as both input
and output. A common use for such a network is the restoration of
noisy images. The image with noise is presented to the (trained)
network and the net iterates to a stable point which, if the image
is close to one of those in the training set, should be the cleaned-
up image. In this way the Hopfield network acts as an associative
memory.

When using the Hopfield net, there is a standard prescription (the
Hebb rule) for initial weight values. This typically does not allow
all training pattern to be recalled correctly, and training rules such
as the Hopfield-Little algorithm can then be employed to improve
performance.

The activation functiom used for each node is conveniently decom-
posed into a potentigl, and a function of one variable applied to that
potential. This is common to many types of network. The function
appliedisin each case a sigmoid, distinguished by a bias which varies
between nodes. Having computed the sigmoid, the sign of the result
is then taken to yield the node state-bt. The biasr; is usually
taken to be zero.

The time sequence is important, and is indicated by the parenthetical
superscripts. The initial node stateg), are the input pattern pre-

sented. Thereafter, the potenti¢$) are computed and each output

statevj(.l) is subsequently modified. This process is repeated until the
node states stabilise, which typically requires very few time-steps. It
is possible for 2-cycles to develop so that node states never stabilise,
but this is rarely a problem.

The Hopfield network will not feature heavily in this study, but has been presented to
show the flexibility of the scheme outlined and the relevance of the training schemes

considered to networks of types other than the feed-forward nets which form the
focus of the work.

5 Feed-Forward Networks

Layered, feed-forward networks will form the bulk of this study. In these networks
nodes are partitioned into disjoilatyers.

This is shown schematically in figure 1.

Patterns are presented at the input layer (layer 1). The states of these nodes are
then used to set the nodes in layer 2, the first hidden layer, and each successive
layer is set in similar fashion until finally the nodes in the output layer—layer

in ann-layer net—are set. The output state may then be read off, the lack of any
feed-back precluding the need for a period of stabilisation.

It is useful to introduce a functioh assigning a layer to each node in mstayer
network:
L:N — Z,.

The restriction on the connectivity is then
Cijzl - Li:Lj—]..

Defining further théeed F'; of a nodej to be the set of all nodes which can influence
it
Fj é{ZGJV | Cij = 1}
the potential
é:NxRWI xRWI — R

is given by

¢§t) = Z ’l}gt_l)’wij.

1 GFJ'
In principle, any function of this potential may then be used, butin practice a sigmoid
is usually employed:

(t) 1
v = @ .
1 —exp _ﬂ(%‘ +75)



Again, this is controlled by a single parameter, the bias at the node. Weight values
are unrestricted. The set of layered, feed-forward networks will be defiotednd
the set of feed-forward networks (not necessarily layered) will be deffibted

6 Back-Propagation

12
2
R
QA

‘\V" \"/é(,‘ The best-established method for training feed-forward layered networks uses the
()\'/‘b\'l(‘ back-propagation algorithm of Rumelhart, Hinton & Williams (1986). Numerous
X KA variations of and acceleration schemes for the technique have been investigated, but
/‘\"/‘\ the following features of back-propagation and its variants are largely universal:
hy
\/ \/ 1° Thetopology of the network is fixed, that is to say the algorithm does
’ ' not add, delete or re-label either nodes or connections.
’ \%‘t"" ‘ 2° The basic weight update scheme is
)\ <7 N/ o€
( "»V«‘ Aw;; = —hW) 22
"' “’ Wis 8wij
/\ /\ whereFE is the error function (omitting functional dependence), and
h(®) is the step size. The step size may or may not be the same
0, 0, 03 04 0s for egch weight, and may or may not vary during the course of the
algorithm.
Figure 1: Al red 3. teed g | network 3° Usually, each node in the network has the same activation function,
9 » A THI-eonnected Sayer, feedrloniard newral neawor distinguished only by its bias. The bias is varied according to
o€
A = —p0) 22
T] h aTj

Again, h") is the step size.
Thus the back-propagation algorith/, and indeed most conventional network
training schemes, simplify the ‘full’ network training problem

Q0 —0

to
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7 Momentum and Acceler ation Strategies there are very few domains for which a reliable algorithm is known to complete in
reasonable time, so any improvement in this are would be welcome.

There are numerous schemes designed to improve the speed and quality of back-
propagation. Probably the most widely used involves the addition of a ‘momentum’ Accuracy is perhaps less of a problem, for when networks learn it is usually the

term to the update scheme. With the new terms the equations take the form: case that acceptably accurate solutions can be found. Moreover, assuming that a
network can be found which is close to a good solution with respect to some known
o€ training algorithm, the final hill-climbing required to reach that solution can easily
() = —pw) (E—1): ’
Awij(t) = —h Ow;; (1) + alwi(t - 1); be performed by the known technique.
0 _ 0 9€ (e _ _ _ .
Arj” = —h Ow;;(t) Tadrt-1), While any speed improvement s always welcome, unless large factors can be gained

this is probably not so much of an issue: training networks is always relatively time-
where the(t) argument now labels the time-step or ‘epoch’ anis the fractional consumir_lg, but once the network hgs begn tr_ained it can be u§ed to process patterns
momentum. As can be seen, the idea is that some proportion of the previous changét @ prod|g|ous rate. Thus 1_‘or rea_l—t_|me_ situations the interest is more often in using
is added on to the current change for both weights and biases. When successful, thi@ frained network, and during training it is usually more important to know that an
helps to avoid local optima, and reduces training times. Momentum is very widely glgorlthm is robust than that it will converge quickly, provided alyvays that the times
used, and though some workers find high values problematical others consistentlynvolved are not very long compared with those for other techniques.
use values as high &89. Richards (1988)

The most interesting criterion, as has already been noted, is that of generalisation
Other acceleration schemes abound, and usually focus on adjusting either the moability. By its nature, this is something that cannot be controlled directly, but
mentum or the step-size according to prevailing conditions. One of the more suc-which will often be very important. After all, it will almost always be possible to
cessful schemes is the SAB (Self-Adjusting Back-propagation Scheme) strategy ofimplement a known function more efficiently with conventional techniques, even
Tollenaere (1990), in which step sizes are increased by a small amount at each timeif this involves a resort to table lookup, so while models which do not generalise
step as long as the error continues to decrease. Once this condition is violated, th&ay be of theoretical interest, it seems reasonable to set some store by a network’s
last step is undone, using information already available for the momentum scheme generalisation capabilities.
and the step-size is gradually reduced again.

This last criterion is the only one in which the comparison between conventional

techniques such as back-propagation is at all subtle. For while other approaches are
8 Assessment of Neural Networks possib?e, and will be discEssgd?the natural way to tackle genetic trair?irr)lg involves

use of the total erraf as an objective function, just as for gradient techniques. The
If the aim of this work is to produce good training algorithms for neural networks, it  subtlety arises from the fact that this is ity information that the genetic algorithm
would be as well to decide what shall be the criteria for judging the effectiveness of anwill normally be given about the training patterns and its performance with respect to
algorithm. There are four main measures which might be considered—robustnessthem. This contrasts with gradient techniques where errors are computed for back-
accuracy, speed and generalisation ability. propagation through the system, feeding more information into it about the training

data. This point is sometimes used to suggest that the genetic algorithm solves a
A robust training algorithm would be one which had wide applicability and which harder problem than does back-propagation but this point of view seems slightly
rarely failed to learn on training sets from some suitably chosen class. There areperverse, since the reason for failing to use the extra information is not that this makes
many classes of networks for which no satisfactory training algorithm is known, and the problem easier (something to be welcomed) but simply that it is not obvimus
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to utilise it in the genetic algorithm, and because an algorithm which fails to use
it has wider applicability. The more interesting question is whether using less
information about the data during training helps improve the generalisation ability
of the network developed by genetic techniques. Of course, until suitable genetic
training algorithms are developed, the question remains incapable of resolution, but
the hope of better generalisation provides yet another spur to progress.
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In 1975 John Holland suggested a novel search technique inspired by adaptatiorfrom sets(G1, G-, . . ., G,,) respectively, them is a member of the effective search

in evolving natural systems (Holland (1975)). He envisaged searching a generalspace

spaceS, composed otructures, which hisreproductive plans would selectively C2G xGa X" X Gp.

manipulate and reproduce to yield constantly changing populations of solutions. The

manipulation of structures was to be achieved through the application of idealised Assuming that the chromosome codes the solution to some problem, as is usually

genetic operators, and the aim was to create selection pressures within the population the case, this amounts to an implicit requirement on the representation that all

which would drive it towards ever-better regionsf chromosomes represent (valid) solutions to the problem. Itis convenienttointroduce
a representation or coding function

One of the key motivations behind the development of Hollaget'®tic algorithm

was an attempt to devise an optimal strategy for “allocation of trials” over the p:S§ —C.
search space. Associated with each structure in the population is a measure of its
performance, variously calledtility, fitness or goodness. The specification of a This function must certainly be injective, for different chromosomes must be capable

utility function is an essential part of the definition of any particular reproductive of being decoded unambiguously to yield structuressinMoreover, it must be
plan. The utility it yields when a structure is tested (evaluated) is interpreted as asurjective, because every chromosome must represent some structure sfibukl
‘payoff’, and the aim in developing the algorithm was to maximise expected payoff pe a bijection, which is reassuring, for it means thatn faithfully represens.
at each time-step by making optimal use of available information.

Having said this, it is not all that uncommon for people to use genetic algorithms in
The basic prOblem can be identified as Striking the rlght balance between “eXplOit- which either several chromosomes represent the same Strucm(edrthatp is an
ation” and “exploration”. When the search begins, all parts of the search space areimproper, or “many-valued” function) or in which not all chromosomes correspond
assumed to be equally likely to be rich in good solutions. As the search progressestg legal solutions. Such representations are to be avoided where at all possible.
however, some parts of the space are seen to exhibit above-average performance;, structures inS are represented by more than one chromosome then at very
while others are observed to exhibit below-average performance. The art—which in jeast the space being searched is unnecessarily large, and while some optimisation
fact can be turned into a science—is to exploit such information as has been gleanetﬂechnique& such as the analogue neurons of Hopfield & Tank (1984), make use of
about the search space by concentrating trials in areas which are performing wellenjarged continuous spaces to smooth search in difficult discrete spaces it is hard
while adequately allowing for the possibility that the poor observed results in other to see such effects operating in the context of genetic algorithms. It is likely to be
areas of the space are due to sampling error. The discussion will return to this themesimilarly unhelpful to have constrained representations (that is, ones in which not all
from time to time. chromosomes correspond to structure§)ror this will almost invariably impede

the intrinsic parallelism and schema recombination which is about to be introduced.
1 Representatl on, Schemata and Ut Ity In order to analyse the behaviour of genetic algorithms it is useful to introduce a set
of partitionings on the space of chromosomes. Given a particular partitioning, each
artition (subspace) will be characterised by the sharing of some specified genes
y its elements. The partitions conventionally used are conveniently expressed as
schemata, members of the set

The structures used in Holland’s genetic algorithm are representduldsyiosomes,
a chromosome being an ordered list of values, each drawn from some specified setg
The chromosome is conveniently pictured as a linear string. Each position on the
chromosome is called gene and the values that any gene can take are referred to
as itsalleles. The search space which the algorithm explores is usually the set of NS . .
all chromosomes, that is, all possible distributions of alleles over the genes. For =G x Gy x o x Gy,
example, if achromosomghasn sites (genes) taking valués; , 72, . . ., n,,) drawn where G? 2GU {o}.
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For example, the schem@ = aboo... o specifies the partition containing all One of the contentions of this work is that the validity of this assumption (that

chromosomeg which haven; = a andn, = b. Formally, correlations between the various instances of each schema exist) is a prime factor
in determining the effectiveness of genetic search. Great care is needed in select-
nel <= (Vi€Zy (& #0): ni = &). ing suitable reproductive plans for tackling the various problems associated with

_ _ _ _ training neural networks. In particular, the schemata should contain chromosomes
Plainly every chromosome is a member—astance—of 2" schemata. (This can corresponding to networks whose performance is likely to be correlated.
be seen by noting that the replacement of any subset of a chromosome’s gemes by
generates a schema which it instantiates, and that thepé'anach subsets.) .
2 Crossover and Reproductive Plans
Let the utility function which the genetic algorithm uses to guide its search be
This associates with each chromosome a positive, real measure of its performanc€&he key genetic operator employed in most reproductive plansrigssover oper-
ator. A simple crossover operat&rhas a functional form:
u:C — RT.
) X:CxCXlpnw —C,
It is useful to construct fromn a measure
_ N that is, given two “parent” chromosomes and a “cross point” it yields a single child
pr=—R chromosome. The component-wise prescription is typically as follows:
which gives the utility of a schema as the average utility of all its members: if
ni, MMi<r,
Xi (777 Ca T) = A i
. (;, otherwise.
#E) = 1 D uln),

neE For exampleX (7, ¢,4) may be visualised as:
Where|§|ls 'Fh_e numbgrofchromosomesﬂrwhich instantiate the schergaNoting RT3 T | X, st
thatC C Z, it is then immediately apparent that C1G2C3CaCs - Cn M 12736465 n
H|C =4, Crossover is understood to be the driving force behind genetic algorithms, and de-
spite its deceptively simple form is carefully designed. Informally, the way that a
so thatu can be used to yield the utility of either a schema or a chromosome. typical reproductive plan proceeds as follows. Aninitial population of chromosomes

is generated in some fashion, often randomly, and the utility of each is determined.
Holland observed that each evaluation of a chromosome, or structure, could bEnhereafter, at each step of the algorithm a pair of chromosomes is selected for cross-
regarded as a statistical sampling event which yields information about the utility oing over. The process is random, the chromosomes being picked with a probability
each of the 2™ schemata that the chromosome instantiates—a phenomenon knowdirectly proportional to their utility. Thus chromosomes with higher utility more
as intrinsic parallelism. Provided that there are correlations between the utilities afften participate in reproduction. A random cross point is also selected, each of
different instances of schemata, this information can usefully be used to guide thae intergene positions being given equal probability. Any other genetic operators
further exploration of the space. This, in fact, is the key assumption in constructingeing used are then applied to the “proto-child”, which replaces some chromosome
a genetic algorithm, and provides the sense in which the genetic algorithm allocatefiosen from the population randomly and without bias. Such a reproductive plan
trials in near-optimal fashion. will be referred to as a reproductive plan of type
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The plan described might be thought of as “fine-grained” ggmchronous, or witnessed by the high sample average of the schema) is further explored, while

steady-state) in the sense that a single individual is added to the population at each another sample point within that space is measured so that its true performance is

time-step, and a single individual is deleted. It is also possible to adopt a proceduremore accurately established. Since each chromosome instantiates many schemata,

whereby an entire new population is generated from the old in a “coarse-grained” (or each reproduction involves many of these events simultaneously, and it is from this

synchronous, or generational) update procedure. Each method has its proponents that intrinsic parallelism derives its power. As the algorithm proceeds, instances of

and their merits are discussed in section 4. short, low-order schemata with high sample averages accumulate in the population.
It then becomes appropriate to think of the algorithm testing these schemata in

. combination. This assertion forms the basis for the “Building Block” hypothesis of
3 CI‘OSSOVEI’, Schemata and Correlations Goldberg (1989), discussed in chapter 5.

A reproductive plan of typ& would make a plausible heuristic search technique,
for it is plain that fitter chromosomes (those with higher utility) more often take 4 T he Selection Algorithm
part in reproduction than their less fit counterparts, and that children bear some

similarity to_each_of their parents. Thus it seems reasonab!e_that Fhe mean uti!ity ofrhe selection algorithm determining which chromosomes in the present population
the population might be dragged up by repeatedly recombining different solutions. yreed and how often, is a vital part of the definition of a reproductive plan, and its

In fact, as has already been indicated, this algorithm is much more than a he”riStiC'accuracy and character can significantly affect the effectiveness of the search.
and can be shown to use the information gained from sampling instances of many

schemata in such a way as to maximise expected “payoff” given the information s¢ has been indicated. a fixed-size populatit)
accumulated in the population (Holland (1975)). ’

of chromosomes is maintained
at time-stept, and each member @8(¢ + 1) is generated from one or more of the
members ofB(t) by the application of the idealised genetic operators (typically

An intuitive understanding of the power of the algorithm can be gained by thinking .o <o and mutation). The probability of picking sameB (#) as the principal
about schemata. Thdfinition points of a schema are those loci (sites) not filled parenfvof any(e%(t I+ 1))' is takFe)n to b;y picking ®) princip

by o, so that the definition points efoboc are 1, 3 and 5. Therder of a schema,

o(§), is equal to the number of definition points it has, so tiatoboc) = 3, and 1 uly)
the definition length of a schemal(¢), is the maximum distance between any pair P(n) = BT AL (1)
of definition points, so that(aoboc) = 5 — 1 = 4. B )
where  a(t) = Z ()
One of the important quantities to be able to calculate isdthuption rate for a 9B (1)

schema—the probability that the child of a parent which instantiates the schema
will not itself be an instance of the schema. If the definition length of the schema The conventional way of implementing this scheme is by so-called “roulette-wheel”

is small, it is fairly unlikely to be disrupted by a crossover operation because the selection, whereby chromosomes are assigned sectors of a notional wheel subtending
cross point is unlikely to fall between the extreme definition points. Similarly, low- angles proportional to their fitness, and the wheel is spun against a fixed pointer to
order schemata are less likely than their higher-order counterparts to be disruptedsee which chromosome is selected. For coarse-grained update, this procedure was
Moreover, instances of schemata with high sample averages for fitness will tendtraditionally applied once for each individual in the (new) population.

to be involved in many crossover operations, because reproduction rates vary with

utility. When these factors combine to produce a child which instantiates a high; _ o _ . . _
When a child has two parents it is standard practice to choose them both with this probability, though is

performance schema containing one of its parents, buF Wh|Ch is not the same 8%0t what Holland suggested. There are subtleties associated with this issue, some of which are discussed
that parent, an area of the search space which has exhibited good performance (as section 6.
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In an exceptionally elegant piece of work, Baker (1987) has pointed out that thist should also be mentioned, in passing, that De Jong (1975) used a more general
algorithm is needlessly inaccurate, because the actual number of trials (childresfheme whereby some fixed proportion (the “generation gap”) of the population was
allocated to any individual can diverge arbitrarily far from that individual’s expectedreplaced at each time-step, and these techniques are sometimes applied.

number. This extra source of randomness in the reproductive plan serves no useful

purpose and Baker set out to provide an efficient algorithm with minimal spread

without biasing the selection algorithm, in the sense of giving sampling probabilities5 Conver gence and Fitness Scali ng

which differ from those in equation (1).
One of the problems which commonly occurs when using genetic algorithms is that
the population suffers “premature convergence”, losing diversity before finding the
t(')(btimum. They way that this often happens is that a solution (chromosome) with
yvery much higher utility than any other member of the population emerges and is
ilocated a very large number of trials (equation (1)). In these circumstances, its
enes can quickly come to dominate the population to the eventual exclusion of all
thers. If the chromosome does not represent a point close to the optimum, this is
undesirable.

He offers several solutions, prehaps the most elegant of which he calls “Stochas
Universal Sampling”. This efficiently achieves zero bias with minimal spread b
the simple expedient of replacing the single pointer used in conventional roule
wheel selection with a set d¥ pointers separated by angles2af/ N, whereN is
population size. This is the selection algorithm consistently used for this work, an
for this reason coarse-grained update is adopted.

Other workers, including Whitley & Hanson (1989b) and Syswerda (1989) advo-The rate at which individuals are allocated trials on the basis of their observed

cate fine-grained update for a variety of reasons, none of which seem especialherformance is governed by the utility function, but in fact the formalism only really

compelling to the author. Syswerda cites the advantages as follows: requires that there be some function which maps any population of chromosomes
into a probability distribution giving each individuals expected rate of reproduction.

The advantages of [steady-state genetic algorithms] are thought to be
that (1) schema fitness versus percentage in the population works out
properly as the fixed-point of the system, that (2) good members of the
population float to the top of the population where they are protected
from deletion. . ., and (3) that poor members sink to the bottom where
they are more likely to be deleted (but can be parents if lucky).

It has been pointed out by Radcliffe (1989) and Grefenstette & Baker (1989) that
given any utility functionu over the search space, the composition of an arbitrary
(monotone) increasing function

f:RT — R+

with p also yields a valid utility functionf o 11, and indeed one which preserves the
Points (2) and (3) are in directly contrary spirit to Baker’s careful analysis, seem taelative ranking of solutions. Thus there is scope for slowing the rate of convergence
have little theoretical basis. His first pointis unsupported by references and seemsab the algorithm by making a suitable choice of utility function, and numerous
suggest that schemata should occupy proportions of the population which reflect schemes exist for “scaling” it to improve performance.
their utility. The author sees no reason to require this, and is not convinced thatitisin
general possible. Neither does it agree with the author’s own empirical observatiornghis idea can in fact be taken even further in principle, for there are no constraints at
which have never shown any discernible difference between the two proceduresdl on the utility function except that global optima must have maximum utility. If
when both use roulette-wheel selection. When working on parallel machines witla fithess function could be devised for some problem which made the search easier
population distributed over many processors, however, the attractions of fine-graindgy removing local optima or—thinking now in terms of a minimisation problem—
genetic algorithms are greater (for example, Tanese (198Thléhbein (1989),  cutting a valley through the space of solutions which led smoothly down to the global
Gorges-Schleuter (1989)). optimum, this would be an entirely valid (and useful) approach, though clearly if the
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search were stopped prematurely the solutions currently held might be very far from THEOREM (The Fundamental Theorem of Genetic Algorithms)
optimal. It seems hard to imagine how such a function could ever be constructed in
the absence of detailed knowledge of the search space (making search redundan
but a possible way forward is suggested by the work of Levy & Gomez (1985) and
Yao & Young (1989), who in the context of a different optimisation scheme called
the “Tunnelling Algorithm” proposed adding singularities to the objective function
whenever and wherever an optimum was discovered. Though it will not be discusse
here, this clearly forms an interesting possible research area.

bet T¢(t) denote the number of instances of a schema & at time-step ¢ in fixed-size
opulation whose dynamics are governed by a reproductive plan of type 3. Let
fi¢ (t) denote the sample utility for the schema—the mean utility of everyn €€ inthe
population at time t—and ji(t) denotethe mean utility of the population at thistime-
OIstep. Moreover, let there be N, genetic operatorsI';, each applied with probability
p;. Then the expected number of instances of the ¢ at time-step ¢ + 1 is governed
by:

Baker (1985) earlier suggested another innovative appr_oac_h to the pr_oblem of_pre— <n§(t 4 1)> > ng(t)ﬂf—(t) 1— %O:pipg 3)
mature convergence, which was to abandon reproduction in proportion to a fixed a(t) P ¢

utility function altogether, and instead to look only at the rank of the chromosomes

when determining their reproductive potentialvhile the problem of how to relate  Itis, infact, extremely easy both to prove this theorem and to fill in boungsféor

the number of trials allocated to each rank still remains, this should at least avoid theth® standard operators. The only subtlety concems the treatment of recombination
problem of “super-individuals” taking over the population, and given some “raw” ©OPerators which introduce extra parents.

objective function allows the same utility function to be used for all problems. This o )
approach is very attractive, and is used in many of the applications in this work. Assqme initially that the operators are all unary (asexual) so that every child has
Some workers, including Whitley & Hanson (1989b) in the context of neural net- premsgly one parent. Then the .term .out5|de the prackets follows directly from
works, further advocate using rank-based selection to speed rather than to slows€lection of the parent on the basis of fitness (equation (1)), and the bracketed term
convergence, and this will be examined further in chapter 7. reduces the bound to take account of the fact that each operator, when applied, can

destroy membership of the schema. (The second term in the bracket is called the
. . disruption rate)
6 The Fundamental Theorem of Genetic Algorithms
When treating binary (sexual) operattpﬁs must be interpreted as the probability
The way in which instances of above-average schemata accumulate in the populatiothatI"; destroys membership of a schema given the probability distribution used to
can be quantified. Given an operator select the other parent.

Ii:C—¢, For example, using the conventional one-point crossover, if both parents are se-

where any other parameters that the operator may take have been omitted for conveected according to equation (1) then the probability of disrupting a schieina

nience, lety$ be the probability that the child of a parent instancirig prevented bounded above by the probability that the cross point falls between the outer-most
from instancing the schema itself by the applicatiomof Formally, definition points. To see this, it is sufficient to note that picking both parents in this
way results in a doubling of the expected number of offspring from each schema
pf £p (Li(n) ¢ ¢ | nee) . (1) to 270 (t) 1 (t)/(t) and that if the cross point falls outside the defining region

: o . . one of the two possible children is guaranteed to instantiate the given schema.
Using this idea, Holland (1975) derived the following remarkable result (pp. 102— Assuming that the cross point is chosen uniformly along the length, this gives

103), though not in this form: pﬁ( = £(§)/(n — 1), where the subscript’ denotes crossover.

Indeed, it is now standard practice to use a “sliding window” to limit the range of fitness values allowed . ) o ) .
in the population. Similarly, the probability of losing at least one definition point as a result of mutation
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is bounded above by,,o(¢), wherep,, is the point mutation rate. Substitution in improve on an enumerative searthn the case of genetic algorithms, the implicit

equation (1) restores the familiar form of the Fundamental Theorem: assumption is that there is correlation between the utilities of the various instances of
a schema. A conventional genetic algorithm is capable, in principle, of recognising
fig (¢ 483 any such correlations, but probablew others.
(nete+1)) 2 ne@50 1= & = mot)]. y - but probafie

_ _ It should be clear that correlations of this type need not exist. To emphasise this
Holland, assuming that only one of the parents was chosen on the basis of fitnegsint, notice that if the size of the search sp&ds s, there ares! possible bijective
showed a slightly different result. coding functions

p:S§—C,

7 Correlationsand Optimisation Schemes almost all of which render effectively unusable such correlations as exist in
Nevertheless, the Fundamental Theorem (equation (3)) will be obeyedl fof

A straight-forward method for searching an arbitrary spSi@ists which is guar-  these representations. The search would be expected to be ineffective simply because
anteed to find the global optimum given a sufficiently long time—enumeration. Aalmost none of schemata would relate chromosomes with correlated performance.
strictly enumerative search simply tests every structure in the space in some fixed

order, but the key feature of enumeration is that the order in which structures ar@f course, choosing a random representation is entirely unreasonable, and there are
tested is independent of the observed performance of previously-tested structur&9rresponding operations that would render ineffective any other search technique.
so that random search can also reasonably be classified as enumeration. It is impbhe intention here is merely to illustrate that schenre not be meaningful if

tant, however, to realise that for all but the most trivial problems, such techniqueisufficient attention is paid to the representation, rather than to suggest that there
areabsolutely impractical. To quote Holland (1975) (p. 17) (changing notation to are in fact no correlations in the representations typically used. Moreover, it is not

coincide with that used here): necessary that the instancesadry schema should have correlated performance in
order for a genetic algorithm to be able to make useful progress; merely that there
The flaw, and it is a fatal one, asserts itself when we begin to ask, “How be suitably many schemata which capture correlations in the search space, including
long is eventually?” To get some feeling for this we need only look some of low order. It should be clear, however, that the greater are the correlations
back at the first example. For that very restricted system there were between such instances, and the greater are the number of schemata which collect
1019 structures inS. In most cases of real interest, the number vastly together structures with correlated performance, the more of the information that
exceeds this number, and for natural systems like the genetic systems the genetic algorithm collects and processes will in fact be useful, and the more
we have already seen that numbers #k&000 =~ 1(3.000 grise, 1f1012 effective will its search be.
structures could be tried every second (the fastest computers proposed
to date could not even add at this rate), it would take year to test about That the Fundamental Theorem holds in all situations, regardless of the quality of the
3-10%° structures, or a time vastly exceeding the estimated age of the representation, is both its strength and its weakness. Because the measure of scheme
universe to test019° structures. fitness used is a sample megg(t), the reproductive plan is entirely at the mercy of

the vaguaries of schemata whose instances are poorly correlated, as can be seen from

Needless to say, the number of possible states of even a small neural networktie fact thatit holds even giventhe kind of wrecking representations described above.
similarly enormous.

6 This is the case for the so-called “golf-course” problem, where the objective golf hole is one point on an
All search techniques other than enumeration make assumptions about correlatigfigerwise level golf green.
between solutions: if correlations do not exist it is plain that it is impossible foThe “probably” is made more precise in chapter 5.
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In such cases the sample averages for schema utilities are completely unreliable
indicators, with the result that the utility will not be dragged up in the way usually
expected for a genetic algorithm.

This point is dwelt on partly because it might appear, at first sight, to be in conflict
with another remarkable result from Holland (1975) (p. 142), which justifies the
lengthy quotation given below. In discussing schemata over fixady represen-
tations, he effectively considers the case of an arbitrary representation. He defines
“enriched” schemata to be those with an above average number of high-performance
structures (or rather, high-performance representatives ynden the following
guotation, some symbols have been changed to agree with the notation used in this
work, and Hollandsth “detector’s; can be taken to be a function which returns the

to
(1/27)%°(40(20!20!))(10°1/(99,990!10!) = 3.

Noting that a schema defined on 20 positions out of 402fés= 108
instances, we see that the 10 exceptional structures occur with density
10—, an “enrichment” factor of 100.... Stated another waygven

when there can be no correlation between attributes and performance,

the set of schemata cuts through the space of structures in enough ways
to provide a variety of “enriched” subsets. Intrinsic parallelism assures
us that these subsets will be rapidly explored and exploited.

[present author's emphasis]

value of theith gene in the representatips) of s €S, i.e.d;(s) = pi(s).

Let S containz structures which are of interest at timébecause their
performance exceeds the average by some specified amount). If the
attributes are randomly distributed over the structures, determination of
“enrichment” is a straight-forward combinatoric exercise. More pre-
cisely, let each¥; be a pseudo-random function and {gt= { 0,1},

i = 1,2,...,n, so that a given structurecS has propertyi (i.e.

di(s) = 1) with probability 3. Under this arrangement peculiarities

of the payoff function cannot bias concentration of exceptional struc-
tures in relation to schemata.

Now, two exceptional structures can belong to the same schema only if

they are assigned the same attributes at on the same defining positions.

If there areh defining positions this occurs with probabilify: ) " Forj
exceptional structures, instead®the probability i1/27~1)". Since
there are(}') ways of choosing: out of n detectors, anc(j) ways

of choosingj out of z exceptional structures, the expected number of
schemata defined dn positions and containing exactjyexceptional

structures
1 hori T
291 h)\j)"

For example, witlh = 40 andz = 10° (so that the density of exceptional
structures isc /2! = 105/24° = 10-7), h = 20 andj = 10, this comes

This is an extremely exciting result, and appears to offer the much sought-after “free
lunch”, suggesting that the genetic algorithm will be able to make good progress
usingany of thes! bijections discussed above. Further reflection, however, suggests
that a reproductive plan will not, in fact, be able to make use of these enriched
schemata in the way that Holland describes. For suppose, as Holland effectively
did, that a random bijective representat'ymcs (the set of all possible mappings

of structures to chromosomes) is chosen. Then the probability that any chromo-
some exhibits high performancehyg assumption independent of the performance

of any other chromosome or set of chromosomes (up to finite-size effects). If the
Fundamental Theorem depended upon the ratitt)/a(t) then the existence of

high performance schemata would ensure that, once they were sampled, the repro-
ductive plan would multiply their numbers, (assuming a suitably low rate of schema
disruption by the genetic operators) thus performing effective search. But the use of
the sample utility in the ratigie (¢)/(t) precludes this guarantee. Thus there is a
“representation problem”, a term which will be used repeatedly to refer to the prob-
lem of devising a chromosomal representation inducing schemata whose members
have well-correlated performances.

This representation problem may be inverted: suppose that for some problem an
equivalence relation is known which relates chromosomes with correlated perfor-
mances. Thenitis clearly desirable that the representation used allow the equivalence
classes induced by this equivalence relation to be expressed as schemata, for only
then is there any reason to suppose that the genetic algorithm will be able to exploit
the correlations. This observation forms the basis of much of the work in chapter 5,
and is discussed in relation to neural networks in chapter 7.
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8 Linkage and Inversion associates with each gene a unique number ffom or equivalently, with each
chromosome some permutatiofrom P,,—the set of all permutations afobjects:

It should be apparent that within the formulation described thus far the physical
location of a gene on the chromosome has some significance. The probability

of two genes being separated by a crossover operation is directly proportional to e
the distance between them. Specifically, the probability that the cross point falls .

somewhere between siteandj on a chromosome of lengthis
This effectively assigns a second ordering to the genes on the chromosome. The
i — j physical ordering on the chromosome is used to determine the meaning of each gene,
n—1 which ensures that children produced by crossover are well-formed, having exactly
_ _ . o one allele at each locus on the chromosome, drawn from one or other parent. The
since there are — 1 possible cross points. This bias in the crossover operator

) " ; o : “specification of the cross-point, is in terms of the alternative ordering induced by the
which Eshelmaet al (1989) callpositional bias—could be eliminated by the simple  ermytation. For this reason it is convenient to call the permutation associated with

expedient of making a random choice at each locus as to which parent the gene Wagnromosome itinkage information, for its sole function is to specify the linkage

taken from. Indeed, this method is now being adopted by some workers, anflapyeen the various genes on the chromosome. A crossover operator can then be
the resulting operator is known as “uniform crossover”. Holland, following the yofined as follows:

biological analogue, sought instead to exploit this bias.

P(cross point falls between i & j) =

X:CxP,xCxl, —CxP,
The distance between two genes on a chromosome defindsrkage: genes which . (i, i), ifm<r,
are physically close on the chromosome are said tidbdy linked, implying that with Xi(n, 7", ¢,r) = { (¢i,m;), otherwise.
they are likely to be transferred together during crossover operations, whereas genes
which are far apart are said to basely linked, implying that they are unlikely to ~ For example, taking = 7,
be transferred together. Short schemata (those with small definition length) specify
correlations between tightly linked sets of genes, and instances of such schemata

are relatively likely to produce children, under crossover, which also instance the

(2[5]7[1]3[6]4]

given schema. If the layout of the genes on the chromosome is random, however, ‘771 ‘772 ‘773 ‘774 ‘775 ‘nﬁ ‘177 ‘ ‘ 2 ‘ 5 ‘ 7 ‘ 113 ‘ 6 ‘ ‘
given a fixed number of definition points (order), there is no reason to suppose that X(3) .
the correlations between the performances of instances of short schemataareany |7 |4 [6[1][2]3]5 | [ G [ G [m]6 6] ¢]
greater than those between instances of schemata having larger definition lengths. ‘ G ‘ G ‘ s ‘ G ‘ s ‘ Co ‘ Cr ‘

For this reason, rather than having some pre-determined linkage between different
genes on the chromosome, it would be useful to have a mechanism which allowedotice that only one set of linkage information is used, which may be taken without
the reproductive plan itself to determine appropriate linkage. Holland proposed thdbss of generality to be associated withand that because of this the crossover
this be achieved through the application of the widely misunderstood and rarely usemperatotX is not symmetric with respect to the two parents. The linkage information
inversion operator. for the child is copied directly from the ‘principal’ parept While ideally this would

be the case, it is difficult to use the linkage information from both chromosomes.
The usual description of inversion involves rearranging the order of the genes on thghis should not be a serious problem, for the aim is simply to give the algorithm
chromosome, but because positions on the chromosome determine their meanitig power to decide the linkage itself, and this it retains: the mechanism is merely
this is a rather misleading way of describing the process. A more helpful descriptiomeaker.
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This said, Goldberg & Lingle (1985) suggested an ingenious way of tackling this to move the definition points for high-scoring schemata closer together, and in doing

problem, through the introduction of PMX—partially-mapped crossover. PMX so increases the probability of children’s instancing the same high-scoring schemata

provides one of a growing number of known ways of recombining permutations as their parents.

(some of which are described in chapter 8), and having developed the operator to

tackle the travelling sales-rep problems¢), Goldberg & Lingle suggested using it Two related issues merit brief mention here. The first is the observation that few

to provide linkage information for a child which is a combination of that of its two  workers seem to implement inversion in genetic algorithms. This appears slightly

parents. In fact, they did not present results for this, and the experiments detailedperverse and might be expected to degrade the performance of the algorithm unless

in chapter 6 suggest that such techniques are unlikely to prove very useful, but thethere area priori for supposing that the physical arrangement of the genes along

idea remains very appealing. the chromosome is appropriate in the sense that there is some intrinsically greater
symbiosis between the parts of the solution represented by neighbouring genes. The

Regardless of how linkage information is passed to children, in order for adaptation work in chapter 6 sheds some light on this.

to be able to search for good linkages it is necessary to define an operator whose

function is to change the linkage of the genes on a chromosome. This can beA possible partial explanation is the work of De Jong (1975), in which he advocates

viewed as a kind of mutation operator for linkage, either performing independent viewing the chromosome as a circle instead of a line segment by establishing linkage

search or doing so in conjunction with PMX or some other permutation crossover between positions 1 and, and selectingwo cross points, exchanging genetic

operator. Conceptually, inversion reverses the order of a contiguous portion of thematerial from the region between them. In the context of chromosomes without

permutation. Thus, given two distinoiversion points, p; andps, and assuming linkage information, where the cross-point is defined with reference to the physical
(without loss of generality) that; < p,, inversion can be defined as location of genes, this suggestion is helpful and removes some of the positional
dependence of the genes by eliminating the “special” endpoints. (The algorithm
I: Py X Ly X Lp — Py will no longer behave differently if the genes are “rotated” on the chromosome, for
. p1+pr— 7, ifpp <m < po, their linkage is unchanged by this.) On the other hand, if inversion is used it is not
with Li(m,p1,p2) = 4 . . : S . .
i, otherwise. immediately apparent that anything is gained from the use of circular chromosomes,

for although in effect, one of the cross-points is then always chosen to be between
This S|Ight|y impenetrable definition will be illuminated by the fO”OWing example sitesn andl, the meaning ofthe genes at these sites is no |0nger detera“jm'g]ﬂi,
where the chromosome lengthis taken to be 8: but rather by the algorithm. The issue of linkage is discussed further in chapter 6.

I((13467285),3,6) = (16537284). o )
( ) 9 Maintaining the Gene Pool: M utation

Inversion should play a very usefuble in a genetic algorithm by subjecting the  The ‘genetic algorithm’ so far described is incomplete. One of the problems that
linkage between different parts of a solution to adaptive search. Inversionis appliedcan be encountered is that every instance of some allele for a particular gene may
to each child after reproduction with some probability and when itis applied the  disappear from the population. For while crossover never introduces new alleles,
two inversion points are each chosen uniformly and randomly. Inversion does notin the population dynamics allow deletion from the population, and it could happen

any way affect the meaning of the chromoso?maor its utility, but rather changes  that some allele is lost to the population entirely. Once this happens, some portions
the likelihood of various of its genes being transferred to a dhilchasse under a of the space become unavailable to the search.
crossover operation. In effect, the presence of inversion allow the genetic algorithm

Mutationis used as a “background operator” occasionally replacing some allele with
i.e., the structure in the ‘real’ search space to which it corresponds another selected at random. This ensures that no allele is ever permanently lost to the
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search, even if the measured performances of chromosomes (and schemata) which
use it are low. This is important because the genetic algorithm may lose these alleles
as a result of sampling error, (or indeed because schemata do not admit adequate
expression of the correlations &). The mutation rate ,, is usually defined as

the point-wise probability of a mutation at any gene. In principle, therefore, the
mutation operator takes the form of a setwadperators

Mi:ngi—>C,

each of which replaces thith gene of a chromosome with the given allele frgm

Mi(mne ..., a) = M2 . 0 1GQTig1 -« - T

The aim is to keep the rate of application of mutation as low as is consistent with
keeping the gene pool well-stocked, for mutation is intrinsically disruptive, causing
alleles from chromosomes (and schemata) which have been performing well to be
discarded. Its introduction completes this preliminary survey of genetic algorithms.
The following figure summarises the reproductive plans so-far examined.

10 General Reproductive Plan
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Create initial population

Selecty, ¢ from population with
probability prQIporuonaI to their
utility

SelectreZ,,_;

0, 7)== X (n, 7", ¢,r)

Replace a random member of the
population byg.

What a “reasonable time span” is

depends strongly on the environments (problems)

under consideration,

but in no case will it be a time

large with respect to the age of the universe.

JOHN HOLLAND, Adaptation in Natural and Artificial Systems
(1975)
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When this work was started, the intention was to tackle the “full” network de-
sign problem for layered, feed-forward networks. In the language of the previous
chapters, the search spaSewas to be() ,—the space of all such networks—so
that the reproductive plan would have control not merely over the topology of the
network, or the connection strengths, but also over the node categorisation (the
division of the nodesV into input noded, hidden nodegi and ouput node®)

and the activation functions. The ultimate hope was to abandon even the restriction
to feed-forward networks, and to takkas the search space. As will be seen in
the following survey of work in the field, this is very much more ambitious than
the usual approach, in which either the topology is fixed and the reproductive plan
manipulates only the weights, or alternatively some other training scheme—almost
invariably back-propagation—is used to train networks, while the genetic algorithm
manipulates only the pattern of connectivity. In these circumstances, the very ambi-
tious programme outlined requires some justification. This is given both during the
commentary on the work of others in the field (presented next), and also in the final
section of this chapter.

1 Genetic Topology Selection

Probably the greatest research effortin combining the connectionist and evolutionary
approaches to machine learning has focused on using a genetic algorithm to select a
topology (connectivity) for a neural network which is subsequently trained using a
conventional algorithm such as back-propagation of errors. This approach has many
attractions, perhaps the most obvious being that it could be thought crudely to model
the way in which biological neural networks are arrived at, evolution providing the
“topology” in the form of the neural connections (initially) present, and the learning
processes upon which “connectionism” is based working within these constraints to
develop brains and minds capable of the extraordinary range of behaviours which
humans and other organisms exhibit. The emphasis here, however, while drawing
inspiration from nature, and respecting her elegance and parsimony, is ultimately
on developing powerful algorithms rather than modelling natural systems, so while
this observation is suggestive it will not be taken as constraining.

Probably the more powerful case for applying the machinery of genetic algorithms
to the selection of topologies, is our extraordinary lack of knowledge about which
connection patterns are in fact appropriate. It is perhaps an exaggeration, but not
a wild one, to say as Miller, Todd & Hegde (1989) do, that ‘the [topology] design

22



stage remains something of a black art’, and that ‘[t{jhose seeking radically newas introduced, but it was pointed out that in practice it is the inverse mapping
architectures cast off into uncharted darkness’. Certainly it seems to be the case that
the methods employed by workers in neural networks rarely consist of more than g:C—S§
simple heuristics along the lines of “if it fails to work, add some more hiddennodes” = . ) ) o ] ) )
and “if it over-learns, reduce the number of hidden nodes.” Seitsma & Dow (198g)Vhich is more often the focus of attention, and strictly it is only this mapping that is
have made a more detailed study of some of these processes, and suggest that/€gpired to be well-defined. (}f is a bijection thery = p~*, butif notp becomes
least within the context of learning by back-propagation—more hidden nodes ar@rmally ill-defined and attention is forcibly shifted to the “growth” functig:)
required in order to train a network than for the processing of patterns by the trained, ) . ) . .
network. They advocate training with a relatively large number of hidden nodesSimilarly, while for many purposes itis convenient to regard the evaluation function
and then looking for correlations between the firing patterns of these nodes in thi &S assigning a utility to eaatiromosome, it is more properly the structures &
trained network with a view to replacing groups of nodes with strongly correlated”h'Ch exhibit u_t|I|ty. The blurring _of the_z d|st|r_1ct|o_n between th_e structu_ré‘ iand
patterns of activity by a single node. In this way they claim both to reduce training!S 'ePresentative (or representativesyinas disguised a potentially very important
times and to improve the ability of the network to generalise from training data. 'SSU€; hitherto alluded to but not expanded upon. This is that the decoding process
itself may be far from trivial. While in simple problems it may be the casathatS

These insights notwithstanding, little is known about appropriate network topologied©r more carefully, that the “natural” representation of the structure in a computer
and the case for any scheme which allows a more systematic approach to selectig? linear string suitable for genetic manipulation) it is hard to imagine such an
a suitable connectivities is powerful. In the words of Miller, Todd & Hegde (1989), identification being made when the chromosomes represent network descriptions
‘[wle seek an automated method for searching this vast, undifferentiable, epistati©f S0me kind. Clearly someevelopmental machinery will be required to perform
complex, noisy, deceptive, multimodal surface'—their surface being the space df'€ morphogenesis which converts theenotype (chromosome) into its expressed
possible network topologies. This characterisation of the relatively limited problenPhenotype (corresponding structure i).

of choosing a topology emphasizes how very ambitious is the goal pursued in

these pages, namely the selection of a network ffbby a single, unified search While this may appear all to be a matter of definition and trivial distinctions, the
procedure. Yet it also begins to explain why genetic algorithms might provide 4ssues involved are in fact quite profound, for morphogenesis is the “flip side” of rep-

suitable choice for this and other parts of the search, for while they have not yd€Sentation. The “developmental specificity” of Miller, Todd & Hegde (1989) refers

proved themselves to be universally reliable, reproductive plans have successfuli§) the degree of accuracy with which a genotype can specify a particular phenotype.
been used to tackle problems exhibiting all of the problematic traits mentioned i the context of network topology, “weak” specification schemes are those which

various combinations, and many of these were important motivations in their initiafl€Scribe higher level attributes of a particular topology, leaving the details to be
development (Holland (1975)). fixed by the developmental machinery encapsulated in the growth functidarp,

Samad & Guha (1989) propose one such weak specification scheme in which they

Considerable emphasis already has been placed in this work on the importance §@ard & chromosome as a “blueprint” which des?r_ibes some of the more important
chromosomal representations when using reproductive plans, and in particular gHgh-level features of the topology. They say that ‘[ijdeally, a representation should
the interplay between the representations adopted, the idealised genetic operatBfs@ble to describe all potentially “interesting” networks, i.e., tho,se capable of doing
used, and the underlying correlations in the problem under study. Miller, Todd guSeful work, while excluding flawed or meaningless structures’'—clearly a far cry
Hegde (1989) distinguish two approaches to tackling network topology optimisatiorﬁro‘fn the flmpl_e bijectio envisaged earlier. Their scheme is based on thei nOt'OT
according to what they call thievel opmental specificity of the representation. When ~ Of “areas”, which correspond to groups of nodes. They fix the number of “areas”,

describing the genetic algorithm in chapter 3, the representation or coding functioRUt &llow each area, in addition to a general description of its size, and approximate
relative spatial dimensions, to contain a variable number of “projection specifica-

p:§—C tion fields"—groups of partially-specified connections to other areas, “addressed”
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either “absolutely” (in terms of fixed area identifiers) or “relatively” (in terms of model of Miller, Todd & Hegde (1989) and the weakly-specified “blueprint” model
relative area identifiers). Additionally, each projection specification field contains of Harp, Samad & Guha (1989) deserve further examination. Both of these mod-
some information about the way that the learning algorithm should treat the group els were designed to study feed-forward networks (though not necessarily strictly
of connections. layered networks) yet neither has any constraint in the representation to ensure that
recurrent networks are not generated. Moreover, itis perfectly possible within either

As Miller, Todd & Hegde (1989) comment, blueprint schemes like those of Harp, framework to generate topologies in which there is no path from the input nodes to
Samad & Guha (1989) ‘may be good at capturing the architectural regularities of the outputs. Of these, the former is perhaps the more serious, for while a network
large [network topologies] rather efficiently’, but ‘necessarily involve either severe Without connections from input to output may simply be considered to have mini-
constraints on the.. search space, or the stochastic specification of individual mum utility, a network with feedback corresponds to no structute a2 . Both
connections’. For these reasons they choose a “strong” specification scheme, irsets of workers tackle this problem by “purifying” the invalid networks—failing to
which the chromosome is isomorphic to the connection matrix for the network, build in feedback connections. Given the representations used, there is perhaps little
and the search space is the entire set of topologies using (at most) some fixe@ther choice, but the implications of this are severe indeed, for there will in general
number of nodes. This scheme certainly allows a more conventional chromosomele more than one way to “purify” a network, and it is hard to imagine a principled
than the ones required for the “blueprint’ representation, binary strings sufficing to Way of selecting between these: the process will inevitably be either stochastic or
code the connection matrix, and in principle allows the use of conventional genetic consistent but arbitrary in its determinism. More fundamentally, however, the in-
operators, though this they abjure. The blueprint scheme, on the other hand, involvedroduction of this arbitrary process seems likely to add to several of the difficulties
using a variable-length representation, with extra control information to allow the already faced by the reproductive plan, in particular to the epistatic and deceptive

chromosome both to be decoded properly by the developmental machinery and to®ffécts, and to the noise of evaluation. These points merely emphasize once more
be recombined meaningfully. how difficult is the problem of finding a good coding, and how littered with pitfalls

is the topological landscape.

Before discussing the relative merits of the two models, a third consideration, intro-
duced by Mjolsness, Sharp & Alpert (1988), merits consideration. They begin with
the observation (also made by Dodd (1989) and others) that ‘[tlhe human genomeThe problem of finding a reasonable chromosomal representation for neural net-
has been estimated to contain 30,000 genes with an average of 2,000 base pairs eagfhrks—whether it be connections or weights which are to be stored—suffers even
... foratotal of roughlyl0® base pairs; this is clearly insufficient to independently  more serious difficulties than these, however. Indeed, the single greatest motivation
specify thel0'® synapses. . in the human brain’. From this they conclude that  pehind the path followed in these pages has been the “hidden node problem”, well
rather than individual connections, it is probably synaptic growth rules which are known within the neural networks community, but rarely mentioned in connection
specified genetically, and go on to make a strong case for restricting attention toyjth genetic algorithms. The problem lies simply in the fact that hidden node labels
structured network topologies. Their elegant approach involves the introduction gare arbitrary. If the hidden nodes are distinguished in some way—for example, by
of recursion relations which, properly seeded, allow construction of networks of haying different activation functions—this arbitrariness might not cause difficulties,
arbitrary size. They examine the scaling properties of network topologies found to pyt in the more common case the problem is extremely severe. Its detailed conse-
be useful for small problems when their higher-order counterparts are trained onguences depend upon the particular representation used and the kind of search being
problems which are themselves “scaled-up versions” of the problems used to testyerformed, but the overall effect is invariably that Taa” representations (and often
and select the smaller networks, and report generally encouraging results. sophisticated representations also) exhibit enormous redundancy. For example, in
a layered network, the consequence is that the nodes in any layer may be permuted
Though the scaling networks described are very pleasing, they are far from main-arbitrarily without in any way affecting the functionality of the network. If this
stream and will not be discussed further in this context, but the strongly-specified problem is not specifically recognised and avoided the result will be a vastly inflated
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search space. For example, suppose that a modest 12—-10-4 rfeisvoekng used:  solution; that is, the components of the solution are identified only through arbitrary
the redundancy in rige representations i)! ~ 4, 000, 000. labels, and are likely, therefore, to be used for entirely different purposes in the two
networks.)
This difficulty was recognised, in the special context of fully-connected, layered,
feed-forward networks, by Belew, McInerney & Schraudolph (1990), who share theReturning to the network representations discussed above, itis instructive to examine
author’s interpretation of this as a truly daunting problem, writing that the ‘invariancehow this redundancy manifests itself. In the case of the blueprint scheme of Harp,
of BP networks under permutation of the hidden units is such a devastating and bask@mad & Guha (1989), it is the area labels which are arbitrary. Since there is
obstacle to the natural mapping of networks onto a GA string that we might considero a priori differentiation between any of these areas, a chromosome allowing up
ways of normalising network solutions prior to crossover'. They then go on toto h areas would be expected to exhibit redundancy from this source alone.
discount this method on grounds of computational cost, and though the approadh the case of the higher-specificity scheme of Miller, Todd & Hegde (1989) the
was developed some time ago by Radcliffe (1988) and is described in chapter 7, ligdundancy expresses itself more directly, as columns and rows in the connection
was never implemented for this reason and others discussed later. matrix representing hidden node connections may be permuted arbitrarily.

It is worth dwelling on this slightly longer to explain why the redundancy resulting Given these observations it is surprising (and perhaps worrying) that both groups
from undetectable hidden node permutations is such a major obstacle to genetieve found good results with their approaches. Further analysis must await the
algorithms but not to techniques such as back-propagation. The answer lies #onstruction of more analytic machinery in chapter 5

the nature of correlations which genetic algorithms are capable of detecting and

utilising. Using conventional operators, it is almost correct to say thairtykinds : . :

of correlations between chromosomes that a genetic algorithm can “understan(; Genetic Tr aning Technlques

are those capable of being expressed as common membership of some é%hem%;l houahth ; ¢ ion has thus far b h licati f .
Further, genetic algorithms were specifically designedgleta@l search technique. though the greaterfocus ofattention has thus farbeen on the application ofgenetic

These characteristics contrast markedly with gradient techniques such as ba _arch techniques to finding good topol_ogies for r?e“ra.' r_1etworkst equally valid (if
propagation, which recognise correlations between solutions which are spatial ss biologically grounc_ied) 1S the p“rSF"t of genetlc "a'”'”g algorithms for neural
close, for these techniques are essentiaibal. In consequence, whereas back- etworks. The lack of biological grounding for this approach is taken to be extremely

propagation will rarely be troubled by the symmetry in network problems (providedi.mportant by some workers especiallytenbein & Kindermann (1989), who dis-

that the starting configuration is asymmetric), simply descending into the neare lpguishes between three types Of Iearning—“genotype 'eami”?" (which has here
local (or indeed, the nearest global) optimum, the genetic algorithm has either t een called topology selection), “learming during development” (morphogenesis)

recognise and “fold out” the redundancy or to explore the whole space oblivious t@nd_“phenotype learning”, (adjustmg welgh_ts within a fixed topology}]menbe_ln
the symmetry. In fact, if a genetic algorithoan converge under such circumstances, & Kindermann (1989) argues that [here is gen_eral agreeme_nt that genetlcs_, en-
this is a failure rather than a vindication of the technique, for it can do so only byV|r0nment and learning [determine] the construction and the higher level functions

abandoning the global search. (The way in which the problem actually arises iqu the nervous sys'gem.. ._Extensive informat!on _processing gapabilities Of neural
practice, as opposed to the abstract description in terms of schemata, is that t\ngtworks are possible with a very low contribution of genetically determined net-

chromosomes when crossed may not be crossing genuinely homologous parts of thrk. char?\ct_ens_tlcs_, if ime and memory charactgrlstlcs would be unl!mlted fc_)r an
individual.” His view is that phenotype learning (using some non-genetic technique)

should shape the behaviour within generations while genetic evolution operates be-
in this text the first number is always the size of the input layer, following through the hidden layers itween the generations, and has developed a system called “Pandemonium 11" in
sequence, fo the last, which is the number of output nodes which networks with genetically-specified topologies learn to play the “prisoner’s
10 This statement is expanded in chapter 5 dilemma” (Axelrod (1987)). Mihlenbein (198?) writes that ‘[lJearning is done on

©
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a fast time scales, evolution on a slow time scale. During learning the meta-control Whitley (Whitley (1987?), Whitley, Starkweather & Bogart (1989), Whitley & Han-
variables of the system (which can be called the genome) are held fixed. On topson (1989b), Whitley & Hanson (1989a)). His approach involves mapping a network
of this, evolution tries to increase the performance by changing the meta-control having fixed topology onto a binary chromosome in the most straight-forward of
variables to cope with the changing environment. manners and simply applying the standard genetic operators of crossover and mu-
tation in order to perform the search. There are many reasons for supposing that

Mhlenbein’s reservations nowithstanding, some workers have investigated genetidhis approach will not work well, yet surprisingly Whitley claims good results. He
approaches to training, perhaps because of the rather limited success and applicabiflaces much emphasis on the use of fine-grained update in genetic algorithms, and
ity of conventional techniques. The non-genetic methods currently used for training fank-based selection, points which will be discussed further in chapter 7.

include the ubiquitous back-propagation (Rumelhart, Hinton & Williams (1986))

Iﬁrfaed}folr(\jNirglnetlvvorﬁ, pe;cep;_tr?(;l Iigafrgnglj__(tlzilosiggfttf(19:2))f_folszerfeptlr(ons,A more interesting approach was taken by Montana & Davis (19897). Davis's
e Hopfield-Little algorithm (Hopifield ( ), Little ( )) for Hopfield networks approach to problems generally involves defining a large number of operators,

a1n$18gonsérucrtllve; ttEchm%uesfsgi:hI_as_tth(;)se of Mez;rdh% Nt?]dal (1989) and I:reanolesigned according to various heuristic considerations, and then either performing
( ). Each of these has fairly limited scope and while there are CONVETYENCE, series of tests to discover which operators are the most effective or using a meta-

theorems for some of the techniques, these do not guarantee completion in reasonélgorithm to controls the rates of application of all operators (Davis (1989)). The

atr)]l.? tlbme.k More part§|culr?rly,h5|r(1jce tth(;:)lpresent focus is don fee_d—fot:w?rdtrr:etworl;s, approach Montana & Davis took to training neural networks was to work directly
\ll)V Itet ar? _-propfga |or; ats a mt)ha esu::ceslfes_tan_ll reTalstly ar the most Quiih the network (at least conceptually) designing operators which manipulated its
ust technigue known for training ese NEworks, it Wil NOt reliably CONVerge, 1S 40 yifie functional sub-components. They suggested six “mutation” operators, one

somewhat sensitive to initial cond|t|_0ns (weights) (Kolen & Pollack (1990)) and of which was essentially a back-propagation step, and three recombination operators;
performs extremely poorly on nets with more than a few layers, presumably because

the st th of the back i " inal att i ql of these, the more successful were determined and used. Several heuristic principles
€ strength of the back-propagating error-correcting signal attenuates and 10S€gq poping the operators they considered. The first is that the weights leading into
accuracy as it propagates further away from the output nodes. Moreover, back-a common node form a logical unit and might usefully be manipul ; .

propagation is if anything less biologically plausible than genetic approaches, andThe intuition here is that ‘networks succeed because of the synergism between their
requires differentiable activation functions in order even to be a candidate teChnique'various weights, and this synergism is greatest among weights from ingoing links
to they same node.” Although this statement is not justified in the paper, the logic
The problem Of f|nd|ng a Suitable set Of WelghtS fOI‘ netWOI‘k iS far from triVial even is presumab|y that the functions Of the input pattern Wh|Ch a node can Compute are
in cases where the topology is known to admit solutions. Borrowing the catalogue constrained by the incoming weights. Their second principle is that since selected
of difficulties compiled by Miller, Todd & Hegde (1989) in the context of network  parents in general have above average performance, information they hold should not
connectivities, the weight space might be characterised as potentially undifferen-jightly e discarded. In particular, rather than drawing new alleles at random from
tiable, epistatic (since weights can have highly non-linear combined effects), noisy the initial distribution, this distribution should be centred about the value the weight
or explicitly misleading (since the error function measured is not necessarily the onecyrrently holds. Their third principle, however, is perhaps the most profound and is
Wh|Ch W|" be Used to make the ﬁnal assessment Of the netWOfk, as fOI’ example Whencertain|y the C|Osest to the approach taken here: they argue that When recombining
generalisation is required), deceptive (since it is hard to imagine representations inmetworks, it isfunctionally homologous parts which should be swapped. In order to
which schemata would accurately lead to the solution, and since similar weight CON-try to achieve this, they use the ingenious strategy of passing test patterns through
figurations can have wildly differing performances), and multimodal (since radically the two networks to be recombined and attempting to identify nodes which have
different networks can exhibit near-identical performance). correlated firing patterns. (Parallels with the work of Seitsma & Dow (1988) are
very strong and useful in this connection.) The hidden nodes from the two parent
The most consistent exponent of using genetic training techniques has been Darrelhetworks are then aligned as far as possible before recombination is performed, in a
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process they call “crossover-features”. algorithm to search for good sets of starting weights for back-propagation. Recent
work by Kolen & Pollack (1990) indicates that the performance of back-propagation
Clearly the approach of Montana & Davis is markedly different from that of Whitley, is significantly affected by the initial conditions used, so an automated technique for
and each has its strengths and weaknesses. Whitley's approachis capable ofimmditiding suitable starting configurations would be valuable. As Belew, Mclnerney &
ate analysis using the standard machinery of schemata and intrinsic parallelism, aBghraudolph (1990) note, ‘[t]here is a pleasing symmetry to this search, in that the
is amenable to any general improvements suggested by mainstream work on gendiiest initial weight vector (found by the GA) is obviously the same as the final weight
algorithms. Unfortunately, when schema analysis is performed the theory appeavector (found by BP) .. It is important to note, however, that the two algorithms
to suggest that his algorithm should fail catastrophically because of representatiorale coupled in this way only if the range of initial weight values being explored
inadequacies, in accordance with the author’s intuition, but possibly in conflict withby the GA is coextensive with the domain of solution weight vectors discovered
Whitley’s experimental results. In contrast, Montana and Davis's approach seentsy the gradient descent procedure.” Indeed, this project is appealing for many
like an excellent heuristic way forward, and appears from their results to give goodeasons. If it is only initial weight vectors which are required, it seems reasonable
performance by “poaching” operators and ideas from other techniques and combiis assume that a coarser-grained weight description might suffice, and that the range
ing them in the unified framework of a reproductive plan. But it is not even obviousof allowed values required might be significantly smaller than for the full problem.
what a schemgs in their framework, let alone that their operators manipulate them Belew, Mclnerney & Schraudolph (1990) further point out that ‘[w]hile it is true
satisfactorily. that the GA is seeking [initial weight configurations] that are “close to” the solution
ultimately found by a gradient technique the relevant measure is not the natural
There is thus a genuine dilemma in choosing whether to follow Whitley's lead ande.g. Euclidean) distance between initial and final weight vectar&kather, good
coerce the problem until it conforms to the standard model of genetic algorithméinitial weight matrices] are close to good final solutiavith respect to the gradient
and is encoded askaary string, or to take the much more appealing and pragmaticprocedure being used’ (original authors’ emphasis). Thus it appears that there is a
approach of Montana and Davis, thus losing the opportunity either to appeal tpotential Ble for genetic search even in the context of networks with fixed topology
the formalism of standard genetic algorithms analysed by schemata and with it thend a classical training algorithm, though the problems of redundancy described
opportunity to carry over any useful results to other problem domains. The approadin the contexts of topology selection and training will be present in the search for
taken here seeks a route between these, and attempts to extend the schema analyiial weight configurations also, if perhaps in less acute form. Belew, Mclnerney &
in such away that it does apply to non-standard techniques such as those of MontaBehraudolph (1990) further discuss fascinating “compromise” strategies in which the
and Davis. This, in effect, is the goal of chapter 5. trained solutions are “reverse transcribed” onto chromosomes so that the evaluation
process effectively improves the genetic quality of the chromosome’s offspring, but
point out that this is possible, in general, only if the spaces searched by the genetic
algorithm and the training algorithm are coextensive, something which has already
been argued to be unlikely. Although these ideas will not be pursued further here,

The third area which might seem fruitful for genetic search is that of optimisationy,ey serve once more to emphasize the wealth of interesting and difficult problems
of parameters for other training techniques. Harp, Samad & Guha (1989) '”ClUdeHresented by constructing a neural network to perform some required mapping.
specification of an initial step-size and its decay constant in each of their projection

specification fields for groups of connections, and Shaffak (1990) included both . .

the step-size and momentum parameters on the chromosome in their brief studyé-fJUStlfl cation

network topology optimisation. These are rather trivial extensions, but no doubt

worthwhile. The foregoing survey makes clear that there is significant scope for the application of
genetic techniques to neural network construction, but also that the problems are in

Belew, Mclnerney & Schraudolph (1990) took the idea further by using a geneticalmost all areas extremely complex and very far from comprehensively solved. The

3 Parameter Selection
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case has not, however, been adquately made for tackling the topology and trainingMore fundamentally, if genetic search techniques are as powerful as they sometimes
problems together. appeat, it seems perverse to break down a problem artificially into the selection
of a topology and the subsequent search for good connection strengths within that

The case for attempting to automate the selection of suitable network topologies inconnectivity. For while this is admittedly not the standard view of the problem, it is
o . ) . 4 surely the case that the ultimate interest lies in finding a good network in terms of its

some fashion is po_vverful, and geneng a_lgorlthms appear to be suitable Cand'd"}‘tesability to perform some mapping, possibly within some constraints on the network,

in view both of their known characteristics and the initial successes suggested bybut rarely within some pre-defined connectivity

the work of Miller, Todd & Hegde (1989) and Harp, Samad & Guha (1989). Once '

this is accepted, the question becomes whether it is efficient to separate this process

(as is almost invariably done) from the training of the network. The implication of 5 Obj ectives

doing so is that some technique such as back-propagation in effect becomes part of

the evaluation function. From the perspective of the implementation of the genetic |f the ultimate goal is to construct a genetic algorithm which is capable of searching
algorithm, this has its attractions: computationally intensive evaluation functions sgome suitably defined subset 8f it is clear that this is very much too great
allow the luxury of using rather more sophisticated (and computationally intensive) a challenge to expect the solution to be forthcoming without breaking down the
genetic techniques with relative impunity, so long as the time spent on the “genetics” problem significantly. The developments over the two or so years since this project
remains small compared to the evaluation of the chromosome. began have been encouraging, but modest, and it will be useful to summarise the
principal objectives both as they appeared two years ago, and as they appear today.

From the point of view of solving neural networks problems, however, the scheme
appears less convincing in general, and it is sensible to consider the circumstancesii .
which the use of such a “heavy” technique as a genetic algorithm could be justified. %'1 Hidden Node Redundancy

One such possible set of circumstances might arise when no topology could be . . .
found which allowed the particular problem to be solved, in other words, a situation As was stated earlier, perhaps the most serious obstacle to progress, and certainly

in which the learning process was likely to be long. Even if the reproductive plan the one which has most incessantly driven the research presented in these pages,

used were exceptionally efficient, however, this would suggest that many hundredsremains the very basic problem of arbitrary hidden node labels. The most ingenious

of training sessions would be required. Another set of circumstances might involve scheme for ta_ckling Fhis.problem presenteq to dqte is sure!y the}t of Montana& Davis
producing a large set of networks to perform different but related mappings. It might (19897?). Their solution |s_fa_1r from perfect, mvoIvmg very S|gnnf|cant computational
then become feasible search for a topology which reliably allowed efficient training colsts;nd even then_ not lifting the redundancy entitélgut provides an extremely

on each of the different training sets, or indeed one which dramatically reduced the Valuable starting point.

time required for the training scheme to locate a solution. . . . . o
g ¢ Sadly, however, it is not obvious that it helps lift the redundancy when it is network

topologies rather than the weights which are being optimised. Clearly, much work
Belew, Mclnerney & Schraudolph (1990) argue that the scheme outlined is increas-remains in this area. The ideas in chapter 5 were inspired directly by considerations
ingly sensible simply because of the advent of large parallel computers, but thesuch as these, in a quest to find a language which allowed more accurate expression
author prefers to adopt a less profligate stance. His feeling is that the approach isf the difficulties posed by the permutation of hidden nodes, and in which insights
likely to prove too computationally expensive in most situations, and that while it might be gained which would allow further progress towards overcoming these
might be necessary to adopt it if a unified approach to finding suitable connection hurdles.
patternsand connection strengths cannot be found, the unified scheme remains the
greater—if substantially more ambitious—goal. 11 though it arguably lifts all the redundancy that matters
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5-2 Schema Analysisand Intrinsic Parallelism Even such basic questions as the most suitable representation for a real number are
not yet resolved, for while the “mainstream” solution is undoubtedly to use binary

ltwas argued in chapter 3 that the success of any reproductive plan depends on codfiRfling. there are those such as Caruna & Shaffer (1985) who prefer Gray coding
the problem in such a way that the underlying correlations in the search space af€® minimise the Hamming distance between adjacent values) and even those such
capable of expression as schemata, and that the genetic operators must manipugtdiontana & Davis (1989?) who prefer to code a real number as a floating point
the solutions in meaningful ways. Yet schemes which are either not amenable {lue. All options remain open.

analysis by schemata (because they violate grossly some of the conventional design

rules), schemes such as those of Montana & Davis (1989?) and Harp, Samad & ) L

Guha (1989) appear to perform well. This suggests that the conventional view o»4 Under standing Existing Results

the genetic algorithm as analysed by schemata is incomplete, usefully describing a

part of the space of reproductive plans, but failing to admit the possibility of morelf, as has been suggested, there is apparent conflict between theory and experimentin
general sorts of intrinsic parallelism and genetic search. this area then clearly a principal objective should be the resolution of that conflict: if

Whitley’s coding involves massive redundancy and the genetic algorithmis incapable

Thus there is a case for trying to extend the formalism to cover more generdlf recognising that redundancy, how does it work? Similar questions shroud many
cases, such as arise when neural networks form the search space. Clearly thi®fghe combinations of evolutionary and connectionist models described thus far,
an ambitious goal, rather in the cavalier spirit of exceptional souls such as Newto@nd some of them will be revisited in chapter 7.

whose inclination when seeing a physical problem he was unable to tackle within the

existing formalism of mathematics was invariably to extend the mathematics rather

than to simplify or approximate his physical systems so that they became amenable

to existing techniques, but since the formalism of genetic algorithms is rather less

extensively developed than the mathematics that Newton inherited it is possible that

the task will not prove entirely unfeasible.

5-3 Representation Issues

If representations are as significant as has been argued hitherto, then a major focus
for research could usefully be a search for better ways of coding networks on
chromosomes. The variety of techniques already discussed is quite wide, ranging
from the very natural representations of Montana & Davis (19897?) and Miller, Todd
& Hegde (1989), through the recursive, structured representations of Mjolsness,
Sharp & Alpert (1988) to the very abstract “blueprint” representations favoured
by Harp, Samad & Guha (1989), but the possibilities are boundless. No doubt as
more becomes understood about the way in which neural networks work, the scope
for sophisticated representations will increase, perhaps leading, in the words of
Harp, Samad & Guha (1989), to those which ‘describe all potentially “interesting”
networks. .. while excluding flawed or meaningless structures’.
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The description of the conventional understanding of genetic algorithms in chapter 3
placed much emphasis on the “representation problem” and the importance of finding
representations which allow schemata to capture such regularities and correlations
as are likely to be presentin the search sgac€he notion of intrinsic parallelism—

the phenomenon whereby eaclyene chromosome instantiais schemata—was
introduced, which has been the key theoretical tool for analysing and understanding
genetic algorithms. In this context, schema analysis as conventionally understood,
provides powerful arguments for using binary genes in order to maximise the degree
of intrinsic parallelism available. It was pointed out, however, that not all problems,
find natural expression as binary—or indegehry—strings. This chapter shows

that the notion of intrinsic parallelism (and the associated “Fundamental Theorem”)
can be extended to non-string representations through the introduction of arbitrary
equivalence relations and the replacement of schemata by their equivalence classes.
It further provides a framework within which arbitrary genetic operators can be
analysed. In doing so, a significant generalisation of the formalism under-pinning
genetic algorithms is achieved, and insights are gained into general principles for
designing representations and operators when applying reproductive plans in new
problem domains. When applied to well-known domains this approach often repro-
duces some of the more successful operators discovered to date, and provides new
insights into their successes.

1 From Schemata to Equivalence

Recall that a chromosomges C will be taken to be a string of genegn1, 12, . - ., 7))
drawn from sets of allele&/,, G-, . . ., G, ), So that the space of chromosomes is

C2Gi X Gy XX Gy,

and schemata are members of the set

—_A
E=GF X Gy x - xGr,

where  Gr=G;u{o}.

Schemata can be identified as the equivalence classes of a set of equivalence relations,
¥, which identify chromosomes which share genes. The set of all such equivalence
relations is conveniently represented by

vE{o,m}",
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wherem is used to indicate genes which must match for equivalence,arad A general method for bounding these coefficients is now discussed.
usual, “matches” any allele. Taking= 4, a particular equivalence relation is then

(o, m, 0, m), which is conveniently abbreviated tomom. Intuitively, the idea is A fairly general recombination operatdr has the functional form

that two chromosomes are equivalent under this equivalence relation if they have X CxCxAv - C

the same alleles wherever the definition hassrgymbol. More carefully, calling ‘ X ’

eacho or m symbol in the string describing an equivalence relation a componentwhere Ax is a set ofcontrol parameters that determine which of the typically

given any equivalence relation € ¥, with components-;, ~»,...,~, and given  many possible crosses between two chromosomes occurs. For example, in the
chromosomes, (€C case of one-point crossover (Holland (19750)x = Z, 1, the set of possible
cross points. Both two-point crossover (De Jong (1975)) and partially-mapped
n~( <= Vi€Z, (~=m) : n, =), crossover (PMX, Goldberg & Lingle (1985)) use the control et = 72 |,

the set of all pairs of cross points, and uniform crossover (for example, Syswerda
wherezZ,, = {1,2,...,n }. That~ satisfies the conditions of symmetry, reflexivity (1989)) hasdy = {0, 1}", the set of allu-bit binary masks. In the case of a few
and transitivity, and is therefore an equivalence relation, follows immediately fromcrossover operators (such as the “Heuristic” crossover for the travelling sales-rep
this definition and the properties ef. problem (rsp) of Grefenstettest al (1986)) the control set depends upon the two
chromosomes being crossed, so that it becomes appropriate todwrite, ¢) as the
The purpose of introducing the equivalence relations which induce schemata is et of all control parameters governing which of the possible childrenthat¢
raise the possibility of imposing other equivalence relations on the search spaeguld produce is in fact produced.
(whetherS or C) which will induce different equivalence classes. For schemata,
fundamental as they have been to understanding genetic algorithms, are merelyGiven this structure, an often useful upper bound on the coeff'mfeutequation Q)
mathematical tool for analysing and designing their behaviour. The population maircan be calculated as follows. Let
tained and manipulated by any reproductive plan consists of individual chromosomes ¢ a
and it is their utility which is actually measured. Holland’s inspired interpretation Ax ={acAx | Vneg veel = X(n, ¢ a)€ },

of such measurements as statistical sampling events over the space of schemgi@,set of parameter settings for which membershipisfpassed to the child from

however forceful, is simply that—an interpretation. There is freedom to analyse thene principal parents), regardless of the partne¢)(chosen. Therp?x can be
algorithm in any way desired, through the introduction of such equivalence relationgounded by

and classes as may be useful, and the objective of this work is to suggest a frame- |A5 |
work within which non-standard equivalence relations and equivalence classes may pg( <|1-wt ﬁ ; (2)
be expoited. The careful formulation of the Fundamental Theorem in chapter 3, X

wherew? is a weight to take account of the possibility that control parameters
Ne(t+1)) > Ne(t) fue (t) 1 %": I from Ax are not all selec_:ted with equal probz_slbili_ty. In mos_t cases (in_cluding all
£ = 7% a(t) pip; | - the crossover operators listed above) the choice is conventionally unbiased so that
=t w® = 1. This bound is, in fact, the one used by Holland to derive the Fundamental

is equally valid if¢ is interpreted as an equivalence clasamyfequivalence relation Theorem, and is typically implicitly used in deriving variations for other operators.

~ onC (or equivalently, given a bijective coding functipnon the real search space

S) provided only that the coefficien;é are calculated correctly according to A similar approach can be taken for mutation operators. Conventional point mutation

can be viewed as a collection efoperators

pi =P (Laln) ¢ € | ne) - (1) Mi:Cx A —¢C

31



with A; = G;, the allele sets. Then with respect to conventional chromosomal representatiensifles of genes drawn
from sets of alleles) analysed with conventional schemata.
Mi(mne .. 1, @) = N2« « - Die1 ATt 1 - - - T
His first principle requires three things. First, it emphasizes the point made in the

The coefficients)f are then given by previous section, that as many equivalence classes (schemata) as possible should
contain chromosomes which have correlated performance. Secondly, by seeking
¢ |0, if & =0, to reduce the defining length and order of good schemata it attempts to minimise
bi = { (1Gi| —1)/|Gi|, otherwise. the likelihood of disruption by the genetic operators. Finally, it tries to ensure that
recombination of (instances of) different schemata works in a useful manner. The
If each gene is drawn from a set/hlleles this yields second principle attempts to maximise the degree of intrinsic parallelism available

to the algorithm by ensuring that each chromosome instantiates many schemata.

>k =t (7).

3 Formae

2 Repr esentations The above con5|derat|ons (gnd others) lead to the_followmg prloposals for construct-
ing useful equivalence relations, good representations and suitable sets of operators.

These principles are not all necessary for an effective genetic algorithm, and are

certainly not sufficient for it, but might be expected to characterise good represen-

Iarl(; (1.975) suggfeste_d SIUb]eCt![n? th_e reE_reﬁi?tatlon |tselrfl _to Zda?tzt'0n£ %UttLh ations. To emphasise the link between these equivalence classes and schemata,
autnoris aware ot no impiementation in which this approach 1S adopted OulSIae IN€y, o 4 mer will be referred to a®rmae,'2 and the number of formae induced by

domain of classifier systems. The Argot Strategy (Shaefer (1989)) does alter thean equivalence relation will be referred to as phnecision of the relation and the

representatic_)n during th_e course of the sear_ch, but n_ot in the manner suggested b?"ormae itinduces? From this point onZ will be interpreted as the set of all formae
Holland, nor in a way which is amenable to this analysis. Goldberg (1989), however, induced by the equivalence relationsim

suggested the following two principles for good representations:

There is little theory surrounding good representations for genetic algorithms. Hol-

In order to express the design principles succinctly, it is useful to introduce the
notion of compatible formae. Two formdeand¢’ will be said to becompatibleif it

is possible for a chromosome to instantiate both of them. Denoting this-hy ’,

a more careful statement is

The Principle of Meaningful Building Blocks:

The user should select a [representation] so that short, low-order schem-
ata are relevant to the underlying problem and relatively unrelated to
schemata over other [defining] positions.

! !
The Principle of Minimal Alphabets: EWE = ENE#P.
The user should select the smallest alphabet that permits a natural
expression of the problem.

The analysis presented here focuses on the interaction between the chromosothalthough Holland chose the neuter form for the Latin noun schema, there is no option but to choose the
representatiorsome set of equivalence relations over the chromosomes, and the ~ feminine form of its synonym, forma.
genetic operators used. Goldberg’s principles, on the other hand, are formulatédn the case of schemata and genes wittleles, the precision &, whereo is the order of a schema.
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3-1 Design Principles 5. (Proper assortmenGiven instances of two compatible formae, it should be
possible to recombine them to produce a child which instantiates both formae.

1. (Minimal redundancy)he representation should have minimal redundancy; Formally,
such redundancy as exists should be capable of being expressed in terms of the ) , o , ,
equivalence relations used. VEEEVE'€E (Ea &) Vned Vy'eg’ JacAx + X(n,1',a)eéNE. (3)

This is highly desirable in order to minimise the size of the search space. Itl.
redundant solutions are related by one of the equivalence relations used then tB
genetic algorithm should effectively be able to “fold out” the redundancy (see
principle 4); otherwise it is doomed to treat redundant solutions as unrelated.

his relates to Goldberg’s “meaningful building blocks”, of which he writes (Gold-
&rg (1989), p. 373)

Effective processing by genetic algorithms occurs wheihding bl-
ocks—relatively short, low order schemata with above average fithess

2. (Correlation within formae$ome of the equival encerelations, including some of values—combine to form optima or near-optima,

low precision, must relate chromosomes with correlated performance.
This ensures that information can usefully be gathered about the performance Q\f
a forma by sampling Chromosomes which instantiate 't.' gnd that this mformat!o_lﬁ)e able to recombine “building blocks” usefully, and any crossover operator which
can usefully be used to guide the search. The emphasis is placed on IOW'preC'S'8Beys this principle will be saigroperly to assort formae

formae because membership of these will generally be less likely to be disrupted by '
the application of genetic operators, and are also more likely to be compatible wit
one another.

crossover operator which obeys equation (3) seems very much more likely to

%. (Ergodicity)lt should be possible, through a finite sequence of applications of the
genetic operators, to access any point in the search space S given any population
B(t).

3. (Closure)The intersection of any pair of compatible formae should itself be a This is theraison d étre for the mutation operator,

forma.
This ensures that solutions can be specified with different degrees of accuracy and
allows the search gradually to be refined. Clearly the precision of formae S03.9 Deception

constructed will be at least as high as that of the higher-precision of the intersecting

formae. Sadly, the formulation in terms of formae, rather than schemata, does nothing to

eliminate the problem ofleception, some degree of which is highly likely for
non-trivial problems. Deception is normally understood as the property whereby
good schemata combine to give poorer schemata of higher order. An example of a
completely deceptive problem would be a volcano if the objective was to find the
VEéeZ Vnel Vel YaeAx : X(n,(,a)€k, minimum: this is in the centre, surrounded by the worst points in the search space.

4. (RespectRecombining two instances of any forma should produce ancther
instance of that forma.
Formally, it should be the case that

whereX is the recombination operator. In this case the recombination operator will _ _ . :

be said tarespect the equivalence relations (and their formae). This is necessary irpecepnor! can be stated ina genergl way as follows. Assume that there is a unique
order that the algorithm can converge on good formae, and implies, for examplég,IObaI optimum represented by <C, i.e.

that)_((n,n,a) = 7 (assuming that equivalence_relations of maximum precision_ Ve C\ {n*} : uln) < ply*).

specify chromosomes completely). It also effectively reduces the disruption rate in

the Fundamental Theorem, though a more accurate valqéxfcthan that givenin  Let the formae induced by any relatione® of precisionk be ¢, ¢2)
equation (2) is needed in order to see this. k=1 ¢ wherep*e¢* . Then a representation is said to be deceptive with respect
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to W if identifying useful formae, representations and genetic operators. The aims of this
d~€eV : maxp (5@) > u(&r). (4) project have been to liberate us from the constraint-afy representations, to

! challenge the hegemony of binary representations, to provide new insights into the
In other words, a representation is deceptive (with respect to the equivalence relationguccesses and failures of current algorithms (and operators) and to suggest methods
in ¥) ifthe global optimumis not in the equivalence class (forma) with highest utility  for tackling problem domains which have so far proved difficult. Having suggested
for all of the equivalence relations. a unified framework for the analysis of genetic algorithms, it would be extremely
useful to examine similarities between operators used in different problem domains,
and if possible to suggest general operators defined with respect to formae rather
than representations. If this could be achieved, even if the operators were not ideal
in all circumstances (which would seem too much to hope for), the application of
Itis instructive to examine the way standard crossover operators interact with SChem“adaptive techniques to new problem domains would be eased, and it might become
ata (the “standard” formae) to see whether they respect and properly assort them igssible more easily to transfer insights gained and developments made from one
the sense of principles 4 and 5. The crossover operators which have traditionallyproblem domain to another. Moreover, if operators were to be defined in terms of
been used are 1- and 2-point crossover. More recently, attention has focused oquivalence classes (formae) in the search spacather than the representation

multi-point crossover and the so-called “uniform” crossover operator. Esh&man  spacec, the issue of representation would be moved away from centre stage. These

crossover makes an independent random choice as to which of the parents the allele

at each locus is drawn from, and shuffle crossover shuffles the (effective) order of

the genes before crossing over, removing “positional” bias in the sense of Eshelman o

et al (1989). All of these operators respect schemata, for it is plain that under all of 9-1 Respect Revisited
them a child will instantiate any schema which both of its parents instance. Only
the uniform and shuffle crossover operators, however, properly assort schemata.

4 Crossover and Formae

The constraints on representations and formae expressed by principles 1-3 (minimal
redundancy, correlation within formae, and closure of formae under intersection)
are by their nature problem-specific. The remaining principles—respect, proper
assortment and ergodicity—are more general in nature and form a suitable starting
point for discussing general, representation-independent genetic operators.

To see this, consider the chromosomes and schelfates 1010 and0101€olol.
Plainly the two given schemata are compatible, with intersedtidn, but neither
1- nor 2-point crossover can cross them to prodiidd in a single step. It should
be clear that this kind of problem will arise farpoint crossover with anfixed n.
Both uniform and shuffle crossovers, however, can recombine the two chromosomes

as required (albeit with low probability) and it should be apparent that they always Recall thatin order for a recombination operatorto respect a set of forma, it
respect schemata. is necessary that whenever two (parent) chromosomes are each instances of some

forma, all of their possible children undeX instantiate that forma also. This
notion can be formalised through the introduction airailarity set for each pair

5 Random, Respectful Recombination of chromosomesg) and¢. The idea is that the similarity set contains all those
chromosomes which are similarfcand( in the same sense that they are similar to
The foregoing analysis has extended the scope of intrinsic parallelismifram each other. A suitable definition is

string representations analysed by schemata to arbitrary representations analysed by
formae. The Fundamental Theorem has been shown to be equally validinthe context  the similarity set of a pair of chromosomes n and ( is the highest
of general formae when suitably formulated, and principles have been suggested for  precision forma containing both n and .
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This similarity set will be writtem; & ¢, and is defined formally as follows: 5-3 Random Respectful Recombination

&:CxC—P(C) The design principles suggested require that the recombination operator simultane-

with ne s ﬂ{ £e= | n,C€€}. ously respect and properly assort the formag,rbut for a general set of formae
there is no guarantee that this is possible. Indeed, formae will later be introduced
For example, in the familiar case where the formae are schemata, in the context of periodicity for which it is impossible simultaneously to achieve
10111001 these goals. A set of form&ewill be said to beseparableif it is possible for some
©®10010010 recombination operator both to respect and properly to assort its merfbers.
10o0l1o0oo

Given this definition it is possible to construct a recombination operator, which will
justifying the remark that the similarity set is the set of all chromosomes whichbe calledrandom, respectful recombination,R#, which respects and properly assorts
are similar top and¢ in the same sense that they are similar to one another. (Theany set of separable formae with respect to which it is defined. Informally, given a
similarity set here is the set of all chromosomes sharing the same gengsatiit ~ pair of chromosomes, this operator chooses a random element from their similarity
¢ share.) set as their child. More carefully, a binary recombination operator for finite spaces

Given this definition, respect can be restated as the requirement that the offspring of R :CxCx A, —C
any pair of chromosomes under recombination is a member of their similarity set,

thatis will be said to be a random, respectful recombination operator, provided that
VneC V(eC VYaeAx : X(n,(,a)en o (.

0 ! :
VeC VCeC Vac A, : ALl :{1/|TI@C|7 if fen @ ¢,

|~’41“(7’7 <)| 07 otherwise.
5-2 Proper Assortment

Of course, for any particular set of equivalence relations all random, respectful

Proper assortmlent, it will be recalled, dlepended upon the notion of compatiblgacombination operators so defined differ only in the structure of their control
formae. If¢ and¢" are compatible, so than¢’ # ¢ , proper assortmentrequiresthat sets, and are therefore essentially equivalent. The continuous case is a trivial
the recombination operatdf be capable of generating a member of the intersection generalisation, introduced in the next section.

&N¢ given one parenj<¢ and anothen’€¢’. Let Ax be the control set associated

with X', and define further Clearly*> random, respectful recombination properly assorts the (separable) formae
Il as respecting them, for it generateery solution a respectful operator is
AC ’IéaeA X 7I7a: ; aSWG | ’ =
x ) = X | (1, a) = C} permitted to generate with non-zero probability.
the set of control parameters which caus¢o produce; when recombining and
n'. Proper assortment can then be expressed as the requirement that there be some
chromosomg in the intersection of and¢’ for which Agf(n,n’) is non-empty.

Formally, 14 «“separable” is chosen because of certain intuitions the author has about the implications of separability
which do not yet merit setting down on paper, but which may in time make the choice seem reasonable.

= yelem / Iegl 1. AS / . . . . . .
VEezZ Ve ex (f > € ) Vnegvneg 3¢eEng : AX (77; n ) 7é ¢ . 15 Clearly is used in the technical sense, and should not be taken to imply that it was obvious to the author

before suitable notation was introduced, or that he did not spend many hours trying to prove the result.
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6 Real-Valued Problems are incapable of being so represented. The problem seems to lie in the fact that
relatively few of the schemata seem to be induced by equivalence relations which

Before going on to examine recombination and formae in general, it will be useful group together “useful” sets of points.

to look at an example problem domain where the ideas may prove useful. An

enormous concentration of effort has gone into using genetic algorithms for real- Whether more useful equivalence relations can be developed depends very much

valued function optimisation in various-dimensional spaces. This therefore forms a on how much insight can be gained into likely kinds of structure in the problem.

natural domain to study. For function optimisation over intervals k", locality and periodicity seem like—
though not useful—starting points.

Conventional wisdom holds that real-valued problems are best tackled using binary

representations because in this way the maximum level of intrinsic parallelism with

respect to schemata is achieved. (Recall that each chromosome instatitiates 6-1 Locality

schemata, and that is maximised for binary genes.) In practice, however, the

intrinsic parallelism is useful only insofar as the schemata relate solutions with Simplifying to functions of one real variablé€ (C R), suitable equivalence relations

correlated performance, and it is far from clear that schemata are the most usefufor capturing locality are intervals specified by a position and a radiusB|cet’)

formae in this context. be the half-openinterval— r < & < ¢+r,r€R™, and letB[¢,0) = {c}. Thenthe
equivalence relation specified by positipand radius: is

The great strength of binary representations lies in their versatility: different schem-

ata relate chrompsome; on quite different _bases. Indeed, their robustness is demon— N~ (¢ < (3kEZ: 1,CEB[p+ 2kr, 1))

strated by the wide variety of problems which have been tackled successfully using

binary representations. For example, using the natural coding for a real number inyith formae

the rangda, 5], with NV divisions {Blp+ 2kr,7) | kez}.
p(z) = {Nm —a+96 Thus any intervala’, ') is an equivalence class und®eme equivalence relation.
B8—a

whered = 1/2N. The schemaoo--- o then specifies the upper half-space
x > (a+ f)/2, whereas the schenmao - - - 01 specifies alternate strips of wid2h
across the space, capturing some possible periodicities.

Moving back to the more general problem of searching a spawéich hasn
real-valued parameters:

s-1in
i=1

The problem lies in the fact that the schemata are not uniform over the space. Suppose

thata = 0 ands = 1.5 with 16 divisions. Therp(0) = 0000, p(0.7) = 0111, where  Z; = [, 3] C R,
p(.8) = 1000 andp(1.5) = 1111. It is possible to specify the intervg.8, 1.5]
exactly using the low-order schermhann, whereas there is no schemaaof/ order a suitable set of “locality” equivalence relatioid can be defined as

which specifies any range which crosses the “Hamming Cliff” betw@&rand

0.8. Caruna & Shaffer (1985) advocate using Gray coding to avoid this (and other) n
problems, but the interpretation of schemata is then even less obvious. Nor is locality vl = H 17,
the only problem: while some periodicities of powers of two in the discretisation i=1
size are easily characterised using schemata, periodicities of three, for example, where I =72 U {o}.
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(The “don't care” character is strictly redundant, but is left in for notational conve-value then the interval they define has zero width. Moreover, compatible formae
nience.) This induces formae which can be described using exactly the same set@and ¢’ have overlapping intervals at each locus. Giver¢ andy'€g’, it is

for ¥, namely clearly possible to choose a setrgfsuch that each gene of the child sits within the
i intersectior¢ N ¢’.
=t =]z tne
=t Thus X ¥ respects and properly assorts formae f®fm composed of intervals of
An example of such a formawith n = 3 can be written as arbitrary widths in the search spaSe A genetic algorithm using this might be ex-
pected to perform well on a real-valued problem for which locadithe appropriate
(B[0.2,0.1),0,B[0.5,0.2) ), kind of equivalence to impose on solutions, utilising the intrinsic parallelism of the

many formae that each chromosome instantiates.
with the interpretation that a chromosoménstantiates if 0.1 < n; < 0.3 and

0.3 < n3 <0.7. Formally, Two related problems, however, remain. The first concerns a bias in the operator,
namely that it systematically biases the search away from the ends of the intervals,
ne <= (Vi€ly, (§ #0): mi€&). violating ergodicity in the sense of principle 6. The second is the question of a

suitable mutation operator.
If these equivalence relations are to be used, then a crossover operator should be con-
structed which both respects and properly assorts the formae they induce. Standaécall that thedle of mutation fork-ary string representations is usually understood
crossover with real genes would respect them, but would fail properly to assort thenfig be that of keeping the gene pool well-stocked, the fear being that if an allele for
An example should make this clear. The sub-forifiag{0.4,0.2) andB[0.6,0.2)  some gene is not present in any member of the population, crossover will never
are compatible with intersectiaB[0.5,0.1), but given gene§.3€B[0.4,0.2) and  be able to generate it and will thus not have access to the entire search space.
0.7€BJ0.6,0.2) it is impossible for standard crossover to generate any value inThis observation, which motivated the principle of ergodicity, suggests that the two
B[0.5,0.1) since the result of such a cross will always eitherOtieor 0.7. The  problems mentioned can be tackled together by defining a mutation operator which
Hamming cliffs also make it immediately clear that standard crossover with binarynserts only extremal values into the gene pool, thus countering the hiag ofAs
genes will not respect these formae. before, givem genes per chromosome (now real-valued), a setfidint mutation

operators are defined according to
The random, respectful recombination operator for this problemis:

Ml-R:Cx{ozi,Bi}—>C,

Xr.cxexo,1" —cC .
[0:1] with MiR(UlTIQ---Un:a):7717]2---772‘—10772‘+1---77n-

with X (1,¢,r) = rifn — (| + min{n, ¢},

The difference between this and standard mutation is thatinstead of using the interval

nj;ai,ﬁi] as the control setl;, only the end-points; and3; are now used. If both
parents are selected according to fitness, such mutations should be dgftdied
crossing over, in order to reduce the probability of generating a child of very low
fithess which then fails to reproduce.

which will be calledflat crossovel.” Given a pair of real-valued genes, this operator
returns a random value within the interval between them. The choice is unifor
provided that each; is chosen uniformly. (The control set heredsr = [0, 1]™.)
Plainly this operator respects formae fr@, for if the two genes have the same

1° defined on a single gene In order to test these ideas, De Jong’s standard test suite of functions (De Jong
17 known affectionately as “top hat”, because of the graph of its distribution function (1980)), described in taldel & 2 were examined using both a standard binary
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ion domain resn. description best-seen performance are shown in the graphs 1-5. An extra funttias also

3 included, which is a variation on Shekel’s foxholes in which the positions of the
) = wa o] <512 0.01 3-D parabola foxholes are random, rather than in a regular grid.
i=1
) = 100(23 — 22)? — (1 — 21)? |z;| <2.048 0.001 Rosenbrock’s saddle fn. dim spacesize description
5
) = Z |z:] |z;| <5.12 0.01 5-D step function hi 3 1.0x10? parabola
— fo 2 1.7x10% Rosenbrock’s Saddle
30 fs 5 1.0x10* step function
) = Zx;‘ +R, R~N(0,1) |z;] <1.28 0.01 Quartic with Gaussian noise fi 30 1.0x 107 noisy quadratic
i=1 fs 2 1.7 x10'° Shekels foxholes
. o5 . fo 2 1.7x 10" Random foxholes
)= |25+ > A |;| < 65.536 0.001 Shekel's Foxholes
=lj+ Zl(xz‘ — a;;)" Table 2: De Jong’s functions (description)
1=
Table 1: De Jong’s Test Functions A comparison is shown between the same genetic algorithm using binary and real
representations, with parameters selected to give good performance with binary
The positions of the foxholes fqgfi; (thea;;) are traditionally taken to representations. Following Shaffetral (1989), the point mutation rate was made
lie in a square lattice with spacing 16, centred on the origin. In the tests inversely proportional to the chromosome length, and was thus higher when using
presentedfs is the same as De Jongf§ except that the coordinates real representations (with fewer genes) than for their binary counterparts. The
of the foxholes were chosen at random ojve65.536, 65.536) at the Stochastic Universal Sampling procedure of Baker (1987) and rank-based selection,
start of each run. Although the domains are invariably quoted as closed broadlya la Baker (1985) were used. Flat cross-over and extremal mutations, as
intervals [—a, a], it is in fact half-open interval$—a, a) which are described above, were used for the real-valued case, and uniform crossover was used
always used to give a number of points in the search space which is a for the binary trials. The results are all averages over 100 runs.
power of 2.

As predicted, flat-crossover with real genes performs extremely well on the smooth
representation with uniform crossover, and a real-valued representation using flatf;, fo andf4, out-performing binary representations. ®n although less effective
crossover as defined above. than the binary case, the global optimum is still consistently found in reasonable

time.

Of the five functions, good performance might reasonably be expectegd ,0f

and f,, which are (essentially) smooth, whereas very poor performance would be The results for Shekel's foxholes are rather more surprising. With the standard
expected ornf;. Reasonable performance might also be anticipatedl;onvhich foxhole configuration, (a five-by-five grid with spacing 16) the binary representation
while not smooth, is reasonably local in nature. The results for off-firend appears superior, though the real representation performs amazingly well considering
that the crossover operator it uses was only designed to réspaldty formae, which
“Off-line” performance is running average of the best result seen so far: this contrasts with “on-line” have no obvious relevance to this prOblem' Notice, however, that points diﬁering by
performance which is the average of all evaluations so far. The nomenclature is due to De Jong (1980)16.384 are very close in Hamming Distance under the binary representation, making
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it easy to hop from one foxhole to another. For this reason, a second set of trials was
performed using fox-hole coordinates each chosen at random. In this case, the real
representation using flat crossover gives slightly superior performance to the binary

representation.

6-2 Periodicity

Dealing with general periodicities, unsurprisingly, is harder. Constructing equiva-
lence relation@ ¥’ capable of capturing general periodicities is not difficult: suitable
relations are specified by a positipra radius: (to allow for fuzziness) and a period

T which is an integral multiple of. Given these, and again simplifying to functions

of one real variable, two chromosomes are equivalent if they lie in intervals of radius
r centred about points separated by a multiple of the pé&rioBormally,

n~n <= (EI k,k'€Z : neBlp+ kT,r) andn'€B[p + k'T, r)),

These equivalence relations are extremely flexible, subsuming the previous “lo-
cality” relations immediately by settin@ to zero. If a crossover operator could

be constructed which both respected and properly assorted these relations it might
be expected that an extremely powerful algorithm for real-valued problems would
result.

Sadly, no such operator exists. To see this, consider the fafimi@es, in the table,
each with radiug = 0.5:

&0 5 10 15 20
&0 4 8 12 16 20
€0 20
& 4 10 16

The numbers above indicate the centres of the intervals which the formae comprise,
so that¢; consists 0B[0, 0.5) andB[20, 0.5). Notice thatt; = & N& # @ sothat

&1 1 &,. Consider chromosomaég €&, N, and4€s,; N&,. If a crossover operator

X7 istorespect, then it must be the case that forakt Ap: X ¥ (4,10, a)€&,; that
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is, all possible children of and10 must be members @f,. Ifitis to assort; and¢, crossover, and this choice will be partially vindicated by evidence in chapter 6 that
properly then there must be some: A p for which X (4,10, a’) €& N &, that is, it this is the better choice of operator in any event.
must be possible to crodsand10 to produce a chromosome which instantiates both

& and¢,. These conditions are incompatible, however, becauses, Né =@ . A formal definition of uniform crossover is as follows:
It should be emphasised that this is not a failure of the forma analysis, which has X“:CxCx{0,1}" —¢C
simply revealed that general periodicities are extremely hard for a genetic algorithm ) u ni, ifa; =0,
to be sensitive to. It has been demonstrated that no recombination operator can with X (n,¢,a) = G, otherwise,

both fully respect and properly assort the forn&€ induced by¥?, but it is

quite possible for an operator partially to respect and assort them. Indeed, uniforthe set of:-bit binary masks being the control sét,. Plainly this operator respects

crossover does this. Whether an operator can be constructed which better respestbemata, since membershigob ' merely requires that wherever the two chro-

and/or assort&” remains an open question. mosomes share a gene, their progeny share it also: since a child inherits every gene
from one or other of its parents, this is automatic. Moreover, uniform crossover
properly assorts schemata, for compatible schemata cannot disagree on the value of

7 Recombination Oper atorsand Formae any gene. This being so,sjfe¢ andn’€¢’, the binary mask defined by
The previous section showed one application of a random, respectful recombination [0, if¢& #£D,
operator in the context real-valued genes for function optimisation, and this was 7)1, otherwise,

mildly encouraging, but while looking at individual cases can be useful, the greater

goal is to develogeneral insights, methods and results. In order better to assess thensures thak' “(n, 7', a)e£ N ¢'.

usefulness of random, respectful recombination operators it will be instructive—if

slightly tedious—to examine some standard recombination and see whether they afbus uniform crossover fully respects and proper assorts schemata over chromo-

random, respectful operators in the sense defined previously. somes withk-ary genes, but it is clear that it is not, for genekala random,
respectful recombination operator. Interestingly, however, in the best-studied and
most widely-advocated case, that of binary geres-(2) uniform crossovedoes

7-1 k-ary Chromosomes reduce to a random, respectful operator. (To see this it is sufficient to note that
if some gene differs in the two parents it must be 1 in one and 0 in the other, so

The comparison between conventional crossover operators and random, respectfidhit making a random choice between the parents is equivalent to making a random

operators is complicated by issues of linkage. It has already been suggested thatinoice from the binary allele set for that gene.)

the absence of linkage information and inversion, one- or two-point crossover is a

strange choice of operator, and that uniform crossover is a more appropriate choicthis immediately raises a plethora of questions: how does random, respectful re-

Syswerda (1989) provides supporting evidence for this, though the work in chapter Gombination differ from uniform crossover for highé? Is the reason for the

suggests that the arguments are not as straight-forward as mightylae supposed.  greater general success of binary representations over those usingkhigpdica-

With linkage information and inversion, one-point crossover can be seen to respedtle in these terms? Equivalently, which is better for highuniform crossover or

but not properly assort schemata, but its lack of proper assortment is far fromandom, respectful recombination? Are schemata the appropriate tools for analysing

accidental: the purpose of linkage information is precisely to bias crossover towards-ary representations? Given that use of a different set of formae leads to a differ-

producing children which inherit sets of co-adapted genes with higher probabilityent random, respectful recombination operator, do other formae exist under which

than other combinations. For these reasons the comparison is made with uniforandom, respectful recombination reduces to uniform crossover?
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Not all of these questions will be tackled; in particular, no attempt will be made at characteristics like redness. For example, using the cailfiog red, 1 for amber

this point to conduct empirical studies into the strengths and weaknesses of randomand2 for green, and assuming that the chromosome represents a set of traffic lights

respectful recombination. In part, this is because the purpose of introducing thisto be controlled (the fitness function perhaps combining expected number of crashes

class of operators was largely for their theoretical interest, rather than their practicalwith rate of traffic flow) the chromosome configurati@®22 would indicate the first

use, but also because it will probably be more productive to continue the quest fortwo lights at red and the second two at green. In terms of the real search space the

patterns that are independent of representation. equivalence classes are then partial specifications of the entire configuration such as
red, o, green, 0.

Analysing recombination with respect to any set of formae for an unspecified prob-

lemis in many ways the very antithesis of the approach that has thus far been adFO"OWing from the “lOC&”ty" formae of the previous Section, a more obvious kind

vocated:; the constant theme has been the idea that the crucial factor in determinind® use when considering genes representing numerical quantities might be ranges

the effectiveness of a reproductive plan is the interplay between the representationsuch as 2—4. Such formae could be represented thus

the regularities (correlations in the search space) and the genetic operators used. It

is at very least sensible, therefore, to consider the circumstances in whietnya 1 2
representation might be appropriate before proceeding to examine other possible Llfjoefid],
equivalence relations and formae which might be appropriate. In the following, 4 3

is taken to be the same for each gene, but this is merely to simplify the description:

the analysis holds equally well #f depends upon locus. with the natural interpretation.

Finally, a more general kind of forma still might involve allowing an arbitrary set of

An obvious case to consider arises when the “parameters” describing the Structure, | qjes to be specified at any locus thus:

in the real search space not sensibly divisible betofior example, if a traffic light

can take on colours red, amber or green it would seem positively perverse to try 1

to introduce a binary coding. Part of this is because the coding would require at 1434 { 2 }

least two bits, which would leave a value without an obvious interpretation; more 5 3)7

fundamentally, however, decomposing colours in this context seems to make little

sense. with the obvious interpretation that where the component of the forma is a set,

membership of the forma requires that the gene at the corresponding locus in the
Another case arises when the parameters take on an ordered range of values. One ohromosome is a member of that set. These proposed sets of formae both close under
the curious features of standard crossover is that it effectively discards the orderingintersection (when compatible), as required by principle 3. The latter set, however,
information present, since the algorithm is (statistically) invariant under a permuta- is not separable. This should come as no particular surprise, since every partition
tion of the allele labels. The “real-valued” genes in the last section are an exampleof the space of chromosomes is included in it. Interestingly, however, if rather than
of parameters taking ordered values since these would almost invariably be im- allowing each component of the forma to take on up t@lues, a maximum of two
plemented as fixed precision numbers. More generally, in any system where theis imposed a separable set of formae does result. This set is sufficiently interesting
numerical values assigned to alleles are not arbitrary but indicate relations betweerio deserve more careful definition. The allele ggfan all be taken without loss

the objects, it might seem natural to code the parametédrsaag variables. of generality to b&Z,,. Then
These considerations suggest a number of kinds of formae. Certainly schemata E=G xGx...xG,
as conventionally conceived might seem like the obvious kind to use to capture where G/ =Z,UZiu{o}.
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In other words, each component of these formae is either a single allele, a pair &nother idea which has considerable appeal is to try to introduce what might be
alleles or a “don’t care” symbol. The interpretation is the obvious one, that to matcltalled basic formae, which would be defined with respect to an arbitrary set of

a single allele the gene in a chromosome must take that value, to match a pair fifrmae in much the same way that basic vectors are defined in (arbitrary) linear
alleles the gene must take one of the two allelic values, and that any gene matchgsaces. A basis might consist of a set of low-precision formae from which all
o. Itis easy to verify that the formae are separable. The reason that they are bfgher precision formae could be constructed by intersection. Equipped with these
particular interest is that under them random, respectful recombination reduces tbwould be possible to embark on a more careful analysis of the way in which
uniform crossover. There are a number of ways to see this, perhaps the simpldstmae can be—and perhaps should ideally be—recombined. It is not ridiculous
being to note that the similarity set of a pair of chromosomes can always be expresstabegin to see emerging ideas suchfais assortment, which would specify that

as: recombination not merely be capable of constructing members of the intersections
ne(= { Ui } { 72 } . { M } of compatible formae given suitable parents, but did so with probabilities prescribed
G Cn G )’ by their precision and imputed utility. The possibilities at this stage seem boundless.

and random respectful recombination simply makes an arbitrary choice at each locus,
in exactly the same way as uniform crossover. The range formae work in a manng Sy
very similar to the locality formae of the previous section, and merit little further mmary

discussion. o ) o )
Intrinsic parallelism, the key concept under-pinning genetic search, has been shown

notto be restricted th-ary string representations. Given a suitable set of equivalence
8 Outlook relations and a crossover operator which both respects and properly assorts its

equivalence classes (formae) without excessive disruption, any genetic algorithm
Some progress has been made in this chapter towards the goal of generalising #iuld exhibit intrinsic parallelism. These ideas have been applied to standard
analysis of genetic algorithms to non-string representations. This permits a shift ¢frossover operators to provide another insight into the apparent superiority of the
emphasis away from finding a representation within which schemata make sense, afiiform crossover operator over traditional 1- and 2-point crossover, and to apply
allows genetic operators to be thought of as manipulating the structusefiiectly.  genetic algorithms more effectively to some real-valued problems. They could

The prospect of a “free lunch”, in the form of a representation which makes searcBqually well be applied to other problems for whicfary string representations and
easyregardless of the nature of the correlations in the underlying space has recededschemata are not obviously appropriate.
but in its place there another appealing prospect, that of designing operators which

manipulate equivalence classes (formae) of general sets of equivalence relations No amount of physical acumen suffices
in useful ways. Inevitably, attention is now focused upon the regularities in the to justify a meaningless string of symbols.
particular problem to hand, and—as always—it will be the case that the more that — N. G. VAN KAMPEN, Stochastic Processes in Physics and
is known about the problem, the more suitable will be the formae that will be able Chemistry (1981)

to be constructed, and the more successful is the genetic search likely to be.

Of course, this work has raised many more questions than it has answered. OneA musician would be horrified if his art were to be summed up as
concerns the characterisation of separable formae—those capable of being simul- ‘a lot of tadpoles drawn on a row of line’;
taneously respected and properly assorted under recombination. Another concerns but that’s all the untrained eye can see in a page of sheet music
the development of more powerful representation-independent operators, ones which The grandeur, the agony, the flights of lyricism and
like random, respectful recombination can be used with any set of formae, but whichliscords of despair: to discern them among the tadpoles is no mean
will presumably be more powerful than this rather simple exemplar. task.
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They are present, but only in coded form.

In the same way, the symbolism of mathematics is merely its coded
form,

not its substance. It too has its grandeur, agony,

and flights of lyricism.

However, there is a difference. Even a casual listener can

enjoy a piece of music.

It is only the performers who are required to understand

the antics of the tadpoles

— IAN STEWART, The Problems of Mathematics (1987)
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Part |: Li nkage various loci are the same so that moving the allele is legal. The confusion is perhaps
increased by the fact that in the particular case of permutation problems such as the

Neural networks are known to be highly non-linear systems. In some cases, codsP, inversionis used in the “néve” way, simply to reverse the order in which a
nections can be deleted with hardly noticeable consequences, leading to the notig@ntiguous portion of the chromosome, because in these special cases this plainly is
of graceful degradation of performance and a distributed information base. Equallyt reasonably thing to do. In such cases, however, inversion is primarily playing the
apparently very similar networks can display wildly differing performances, while role of a mutation operator, rather than re-linking chromosomes.

very dissimilar network¥ can implement almost identical functions. It therefore

seems very likely that when using a genetic algorithm to select good networks, thEhere are, however, many people who do understand atesof linkage, and of
phenomenon ofpistasis—whereby the effect of a gene or some group of genes isinversion as its manipulator in genetic algorithms, who choose not to make use of it.

very strongly dependent on which other alleles are present on the chromosome—uwilhis is curious because there seems to be very little reported work which suggests
be prevalent. that it is not useful. Such work as the author is aware of is now discussed.

The mechanism which Holland (1975) appealed to in the hope of ameliorating
epistatic effects waknkage, described briefly in chapter 3. Recalling that tightly- 1 Survey
linked genes are those which have a tendency to be carried over together under

recombination, it can be seen that genes which are close together on a conventioq:f)lle bulk of the work on linkage appears to have been performed between 1967 and
chromosome are more tightly linked than those which are further apart. Theinversiog972 by Holland’s students, the three principal studies being the doctoral theses
operator was introduceq to_allow reproductive plans to subject the linkage of th%]c Bagley (1967), Cavicchio (1970) and Franz (1979).0f these, only Franz's
chromosome to adapta_mon in much the same way that.the gene value.s are adapt@&ﬁsidered inversion in the form suggested by Holland (1975). Although his research
Proposals to extend this scheme throqgh the introduction of pe.rmutatlon CroSSOVEdiied to show any positive effect of using inversion, this has been attributed by both
operators such as PMX (Goldberg & Lingle (1985)) were also discussed. Bethke (1981) and Goldberg (1989) (citing Bethke) to the relative simplicity of the

. . . . ) problems studied by Franz.
The intention with all of these schemes is that co-adapted sets of alleles will come

to be grouped together by the selective advantage that their chance grouping v;@

p th This relati lective advant Idb ted to b ._While various permutation crossover operators have now been introduced, only
conteron them. Thisre 8,“ Ve Selective a \./a:n age would be expectedlo be espect oldberg & Lingle (1985) seem to have suggested using these to manipulate linkage
significant in the case of “mutually epistatic” sets of genes, which are more senS|t|v|(f;1

o di tion th th formation, and surprisingly they presented no results of performing such linkage
0 disruption than others. manipulation themselves. The only other work of which the author is aware which
uses inversion in anything like the sense described by Holland is that of Whitley

Curiously, very few workers appear to use linkage in their implementations. Thi 1987), which is now discussed.

is in part because the most common exposition of inversion (in terms simply o
excising, reversing and replacing a portion of the chromosome) seems to make little
sense? exceptin very special problems, there is no reason to suppose that an allele
which is useful at one locus will be useful at another, even if the allele sets for the

21 The discussion of work before 1985 draws heavily on a discussion on (pp. 167—170) in Goldberg (1989).

This is largely because this is the only work which references the pre-1985 studies in the context of
to the author’s personal knowledge, this is a misunderstanding @i¢hef inversion which many people  linkage of which the author is aware, and for this reason he became aware of these early studies only
have. recently.

that is, even after permutation of hidden units and so forth

45



2 Whitley’ sCardsand “Inversion” tures are used on problems where ordering does not affect the value of
[chromosomesF inversion does more than change the linkage of fea-

Whitley (1987) investigated using genetic algorithms for the interesting, if artificial, tures. It provides a type of non-destructive noise that helps crossover
problem of searching for winning 5-card poker hands. In this work he allowed to escape local maxima. Compared to tests using crossover alone, the
“five of a kind” and gave no credit for straights or flushes so that, in effect, credit search using inversion was consistently more efficient; optimal and near
was only assigned for multiple collections of a single value, with special cases for optimal solutions were found faster and more high-valued combinations
“full houses” and “two pairs”. Although not stated explicitly in the paper, it is of features were found.

not clear from his discussion that suits were not used either. This is an interesting

problem because it presents another kind of generic chromosome to consider—ondie goes on to say that

which represents an unordereallection of objects. (The term “set” will not be

used because the convention is that repetition is of no consequence in a set, so that [0o]ne of the problems of using only crossover is that each position in

{a,a,b} ={a,b}.) the list of features is isolated. Its erratic performance may be due to the
fact that crossover cannot exploit all the information in the gbaind

It is worth digressing and asking what formae might be introduced to analyse this may not be able to get at certain segments of information that develop

sort of problem. It is desirable that the formae do not distinguish between two in the hands. If the poolis viewed as a two dimensional array with each

chromosomes merely because they present the elements in a collection in a different  row being a hand and the features appearing in the columns, it means

order. The natural formato use (or at least, the natural extension of schemata to this  that information in one column cannot be accessed in another column.

case) specifies a sub-collection of elements which the chromosome must contain ~ For example, it is possible that no ace card appears in the search pool

in order to instantiate the forma. Thus, taking Whitley’'s cards as an example, as the first card of a harfd. Such a coincidence makes it impossible
the chromosomé4437 would be an instance of the forn3d7 oo, among others, to find the optimal solution when only crossover is used. Inversion
where the convention adopted is that that defining positions are filled from the left, “stirs up” the columns and thereby “stirs up” the available information.

and follow the numerical order of the cards. This would then suggest that before
performing a conventional cross between two chromosomes, one of them should beA number of points follow from this. First, Whitley calls inversion (as he uses it)
re-ordered in such a way that any shared elements are aligned: only in this way will “non-destructive” because the real structur&itan unordered collection of cards)
crossover respect the formae. to which the chromosome corresponds is unaffected by it. Under inversion which
only affected linkage, however, it would be the case that if two chromosomes were
Whitley (in the absence of the formalism of formae, of course) chose a different path, the same apart from their linkage (and thus corresponded to the same structure in
performing crossover as usual but using theited inversion operator also. In this S) then all of their possible offspring under (conventional) crossover would also
case using rige inversion is quite acceptable because the location of an allele on the correspond to that structure. This is not true under Whitleggme, however, for
chromqsome does n_ot affe_ct its phenotypic expression. Whitley’s expenrne.n.ts show X (11122,22111,4) = 11111,
that using levels of inversion around 20-30% improves performance significantly
over Just using crossover, thoth it should be noted that these results are in gaglvhitley uses the term “schemata” here, having earlier explained that ‘[tjhe term schema will

absence of a mutation operator. His conclusions are as follows (Whitley (1987)):  refer to any information structure to which genetic operators apply'—a highly non-standard
use of the term.

The results of the experiments indicate that where real vatush- 24 Whitley uses the term “pool” to refer to the set of all alleles in the populatiamatocus.
25 though it would simple, as Holland (1975) (p. 110) pointed out, to remedy this kisgitable
Whitley's use of the term “real valued” does not seem to mean real in the sefseatifer initial strings suffice to ensure that every locus has at least one copy of every allélefgr
thanN since his examples all use integer values. genes.
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which is plainly a different structure. In one sense this is exactly what he is aimingpopulation with the most aces. The introduction of standard mutation would remedy
for and validates his point that (his) inversion does more than alter linkage, buthis problem, but to deal with this particular short-coming allowing the possibility
the example also shows an effect which Whitley does not describe. For havingf copying an allele (with low probability) from one locus to another would suffice
eliminated runs and flushes, the good solutions are all sets of common values: aand perhaps be better. Interestingly, random, respectful recombination (defined with
“n of a kind” beats any i — 1 of a kind” and so forth, subject to exception rules respect to these formae) does not suffer from this limitation since having aligned
for a “full house” or “two-pairs”. But these are exactly the kinds of solutions that any common alleles, it would be free to place any values at the remaining loci.
inversion will tend to generate. Assume that aces are “high” (which in fact they

were in Whitley's example). Then even if the entire population began with theThis concludes the survey of work on inversion and linkage.

single chromosomd2222 (up to permutations) wheré represents an ace, under

Whitley’s scheme it would be possible, if unlikely, to produce the optimum after

only three crosses and three inversions: 3 Uniform Crossover
A2222 X'(.;SZ) AA222 X'(.;g) AAAA2 X»(LSB)AAAAA If no operator is to be used to re-link the chromosomes, as seems to be the case with
24222 22A4A2 24AAA ’ the overwhelming majority of implementations of genetic algorithms, then the bias

towards schemata whose definition points are clustered together on the chromosome
where in each case the lower chromosome is obtained from the upper one (whigleems positively bizarre, and it is not surprising that many workers in the field
results from the cross) by inversion. While this is wholly desirable in the particularhave explored alternatives to Holland’s simple one-point crossover operator. The
case of searching for solutions likkAAAA, this property woulchot hold for a only justification for the bias in one-point crossover could be that the genes were
general collection of optima, or indeed for the real poker-hand optimisation wheréaid down on the chromosome in a way which was knawpriori to reflect the
the optimal solution is a royal flush (10-Jack-Queen-King-Ace, all of the same suit)linkages between suitable parts of the solution. In order for this to be possible, the
Indeed, in reality each card is unique so that whileitm inversion s still permissi-  worker would need considerable insight into the structure of solutions the problem,
ble the kind of crossover required is more akin to a permutation recombination thagomething which cannot in general be assumed.
a conventional crossover. Whitley’s version of inversion might still be useful, but it
is hard to see that it would produce the dramatic improvements seen in his simplathe simple generalisation due to De Jong (1975) which interprets the chromosome
experiments. as a ring and allows the selection of two cross points has been discussed, but while
this effectively reduces the definition lengths of some schemata, it does not remove
Having said this, Whitley's strategy (preferably with the addition of mutation to keepthe fundamental bias towards short schemata. A more obvious choice of crossover

the gene pool properly stocked) might be a good way to tackle the cards problem agperator in the absence of linkage information is the so-calféfiirm crossover
formulated, even with different optima. The point of this discussion was to examineperator, discussed in chaEe& & 5:

his analysis, to point out that his test problem was particularly amenable to his

approach (in the sense that transfer of information from one locus to another is a XW.CxCx {0,1}" —C

very efficient way of generating good solutions given the particular characteristics ) () ni, if a; =0,

of the optima) and to provide another interesting application of forma analysis. with  X;%(n,¢,a) = { G, otherwise, (1)

It might further be pointed out that in the particular case of searchingrfaf‘a This operator is such an obvious choice that it is hard to know how to assign credit

kind”, standard crossover with alignment to ensure respect of the formae introducddr its origin, but its properties are discussed by Syswerda (1989) and Eshelman
above, would be very unhelpful in the absence of other operators because it would al (1989). Syswerda explicitly makes the connection between (lack of) linkage
never be able to generate a hand containing more aces than the hand in the initiaformation and uniform crossover, writing:
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One operator that we might be able to dispense with is the often men- comparison between uniform and traditional crossover operators can be made after

tioned but seldom implemented inversion operator. Inversion changes a few definitions.

the ordering of [genesf on the chromosome without changing their

meaning. The hope is that inversion will, over time, move together DEFINITION Therandom re-linking operator
co-adapted sets of [alleles] in order to protect them from disruption and L:P, — Py,

to make it more likely that they will be crossed with similar groupings.

In other words, inversion attempts to reduce the [disruption] rate and
increase the combination rate of crossover. With uniform crossover,
however, use of inversion is not necessary and will have no effect, since
uniform crossover is completely indiscriminate in choosing [genes] to
mask. .. When using uniform crossover, [genes] which are far apart
have the same chance of being masked simultaneously as [genes] close
together.

when applied to (the linkage information from) any chromosome of lengtis
defined to the that which returns a randomly-selected permutationfrgrmo

The following algorithm can then be defined:

DEFINITION A genetic algorithm which uses the one-point crossover operatér,
with cross pointr chosen from the binomial distribution (equation (2)), and in
which the linkage information is chosen for the child by application of the random

Clearly it is true that if uniform crossover as described by equation (1) is used then re-linking operatoL, shall be said to usiéinomial Crossover with RandomLinkage.

inversion has no effect (since it acts only on the linkage information which is not used =
in this definition) but it is far from clear that uniform crossover plays a simifde r

to crossover with inversion, or that it will perform better, or that it is ‘unnecessary’. Using the definition of equivalence given below (which is the natural one) it is easy

to show that such Binomial Crossover with Random Linkage is precisely equivalent

Under uniform crossover, the probability of generating a bit mask wiftis is o uniform crossover.

binomial provided that the control sgt,, = [0, 1] is sampled appropriately. More
precisely, lettingV,; be a random variable taking the number of 1's in a mask of
lengthn, and lettingg = 1 — p, wherep is the probability that any bit in the mask

DEFINITION Two crossover operators are equivalent if the probability of generating
any given child from any given pair of parents is equal under the two operators.

s 1, n THEOREM (Equivalence of uniform crossover and Binomial Crossover with Random
P(Ny=7|X=XW)= <r> Pl (2) Linkage)
For one-point crossovex (1) (and two-point crossove¥ (2)) with linkage the cross The uniform crossover operatdf () is equivalent to Binomial Crossover with
point is usually chosen uniformly between 1 and- 1 (inclusive), so that Random Linkage.
. 1 Proof:
PNy =r|X=XWorX=x%)= : (3)
n—1 The distribution for the number of genes taken from the first parens, in each

Though this was suggested by Holland, and is the norm, the cross point could©@se given by equation (2), by assumption. Under uniform crossovet(n, ¢, a),

be chosen to be binomial for one- or two-point crossover also. An interesting €Very gene frony is equally likely to be included in thegenes actually taken from
7. Since the permutation used far") (5, 7, ¢, ) is randomly selected b, this

. _ _ o . _ is also the case undéaf(!). Thus every gene is transferred with the same probability
This discussion was based on binary genes, but applies with equal validity to genes with d h d it foll h h d h child with th
arbitrary sets of alleles. The words in square brackets were all ‘bit’ or ‘bits’ in the Syswerda’s unaer t. .e two operators, and It follows that they produce each child with the same
paper with the exception of [disruption]. probability. QED
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COROLLARY It follows trivially from the above that two-point crossover is also it is generally accepted that two-point crossover is superior to one-point under these
equivalent to uniform crossover provided that the separation of the cross points onditions. Syswerda also concluded that uniform crossover was generally superior
chosen to be binomial and re-linking of the child is achieved uging: to two-point crossover. Neither study, however, investigatedinversion. (Esheiman

al also considerefl-point shuffle crossover operators for arbitraryThe shuffling
corresponds to random re-linking iy, and the number of cross points biases the
amount of genetic material transferred:kaagpproaches, the chromosome length,

] ) . o _the bias increases towards transferring half the genetic material.) The demonstration
It has been shown that relatively minor alterations to Holland's original formulationi, 5t uniform crossover can be regarded as one- or two-point crossover with binomial
produce an algorithm which is equivalent to one using uniform crossover. The onlyg|ection of cross points and random re-linking provides an interesting way to

changes required are the substitution of a binomial choice of cross point for thgeparate the differences between traditional and uniform crossover operators, and to
conventional uniform choice, and the use of a much more disruptive operator thag.st which effects are more significant.

inversion (indeed, a completely disruptive operator) to re-link the chromosome. An

obvious question, then, is whether Holland’s original formulation is better or worse

than the slightly modified version which is equivalentto the use of uniform crossoverd The Genetic Algorithm

Before answering this question it will be useful review the work of Eshelebah

(1989), in which a number of crossover operators are classified according to theirhe five test functions originally investigated by De Jong (1980) seem to have be-

“positional” and “distributional” bias. come established as a reference set, and these have been used for the experiments
detailed below. These were discussed in chapter 5. The particular genetic algo-

Positional bias is the tendency of a genetic algorithm (or its crossover operator) tathm used for these experiments had the following characteristics. Synchronous

transfer groups of genes with different probabilities depending on their position orf“generational”) update was used with Baker’s “Stochastic Universal Sampling”

the chromosome. One-point crossover without inversion exhibits positional biagelection algorithm (Baker (1987)). Rank-based selection was used (braéally

towards genes which are close together on the chromosdiié, together with  Baker (1985)), with the utility:(; ) of the kth-ranked chromosome being given by:
inversion, attempts to exploit this bias by linking the chromosome in such a way

that the sets of genes transferred interact with each other in useful ways. It is the psght
positional bias of conventional one- and two-point crossover operators which places p(ne) = 1—¢n’
short schemata at an advantage relative to their longer counterparts of equal order. °

wherep; = 0.1 andg; = 1 —ps; = 0.9. (This fitness is equivalent to stepping down
Distributional bias is the tendency of a genetic algorithm (or crossover operator) tthe list, fittest first, selecting the current element with probabjilitythe “selection
transfer some favoured amount of genetic material preferentially from one paremirobability”.) Grefenstette’s parameter settings were used for population size (30)
to the child. One-point crossover with a uniformly selected cross point exhibitsand crossover probability (0.95) (Grefenstette (1986)) but the point mutation rate
no distributional bias because all possible amounts of genetic material are equaliyas made inversely proportional to the length of the chromosome with the constant
likely to be transferred (equation (3)). Uniform crossover wite= 0.5 (or one- of proportionality chosen such that an average of one mutation occurred per update.
point crossover with a binomially-selected cross point) on the other hand, biases tt&caling the mutation rate in this way is suggested by the work of Stehfie¢1989),
algorithm towards passing on roughly equal amounts of genetic material from théhough they recommended a lower constant of proportionality.
two parents to the child because the binomial coeffic(%lﬁzj) > (7).

4 Preliminary Discussion

Binary coding was used for functiorfs, f3 andf,, and Gray coding fof, and f5.
The studies by Syswerda (1989) and Eshelrtaal (1989) suggest strongly that This choice was made becaugeand f5; sometimes required very large number of
uniform crossover is superior to one-point crossover in the absence of inversion, araycles to converge to the optimum, which resulted in very large error bars on those
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Graph 1: De Jong’s f1 Graph 2: De Jong’s 2

Mean evaluations

runs. (Caruna & Shaffer (1985) discuss the advantages of Gray coding for geri&tic
algorithms.) Following Eshelmagt al (1989) the total number of evaluations,,
required to find the global optimum was recorded for all functions extgpivhere

the total number of evaluations to reach a value béldmwvas recorded (Eshelman
(1990)). (The functiory, has Gaussian noise, so the global optimum is not welly,
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Finally, and most importantly, the assignment of bits to positions on the chromososae
was randomly chosen at the start of each run. This is useful for isolating the effect
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parameter are grouped together, in order) may be close to optimal.
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The first series of experiments attempts to determine the effectiveness of inversiamin
re-linking solutions in ways that enhance the search. Two point crossover was us[gd,
and the probability of performing an inversion varied from 0 to 1 in steps of 0.1. T

all cases the cross point was chosen uniformly along the length of the Chromosmw 2000

following equation (3).

1500
The results of these experiments are shown in graphs 1-5. The results are~all
averages over 50 runs, with the exceptiotf ofand f5, where averages are over 400

500
runs because the error was consistently much higher for these functions than for the
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but finding good solutions is very easy.) The error bars show the standard error.

Although the data is quite noisy, the graphs show little evidence that inversion is
playing any useful@le in enhancing search, at least with respect to the time taken
to achieve the optimum. Bearing in mind that the order of the bits is random, this
is perhaps surprising. Runs were also performed (though are not shown) using the
“natural” assignment of bits to loci on the chromosome, rather than choosing random
loci, and these showed no perceptible difference from the results given. This seems
to indicate that linkage is not important in these problems. Given this, the failure of
inversion to enhance performance seems less surprising. Interestingly, these results
contrast slightly with those of Syswerda (1989), who found that using the standard
ordering for Shekal's foxholeg), the traditional operators out-performed uniform
crossover, whereas using an arbitrary ordering uniform crossover performed better.
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Graph 6: De Jong’s f1
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Graph 8: De Jong’s 3
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Graph 7: De Jong’s 2
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Graph 9: De Jong'’s f4
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Graph 10: De Jong’s f5
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The effects he saw were very weak, and he used binary-coding, whereas Gray coding
has been used here. It is not hard to believe that locus is more significant for binary
coding than for Gray.

More generally, these experiments appear to fit into the pattern of research which
searches for and fails to find linkage effects. A number of possible explanations
come to mind for these. First, it could be that linkage is of no significance in the
problems studied, or at least that the linkage between the genes is similar over all
pairs. Secondly, it could be that the time-scale on which the linkage rearrangement
is achieved is too long to show up in these results: only about fifty generations are
seen here. Thirdly, it could be that the selection pressure is to weak to have any
noticeable effect; it is thatility of the chromosome which determines reproductive
success, so that there is no immediate benefit derived from good linkage. The
selection pressures for achieving good linkages are thus very much lower than
the corresponding pressures towards good solutions. In this context it would be
interesting to investigate the use mproductive evaluation (Whitley (1987)), a
scheme whereby a parent’s utility is modified to reflect that of its offspring (clearly

a scheme well-suited to fine-grained rather than coarse-grained update). In fact,
the paper in which Whitley discusses reproductive evaluation is the same one as
discusses his inversion, but it has already been argued that it is hard to draw general
conclusions about inversion as a re-linking operator from his trials.

A fourth possibility is that inversion, only a mutation operator in the context of
linkage, is inadequate for searching the space of good solutions. In this context the
various permutation recombination operators offer a way forward.

Finally, the possibility must be admitted that there is simply no effect to be seen. The
reason for playing down this explanation in spite of a having provided no evidence
of an effect is that it is very hard to understand how such an effect could be entirely
absent, especially since inversion is known to exist in nature. The fundamental idea
underlying adaptation is simply that the combination of a mechanism for changing
structures and selective reproduction leads to “evolution”. So powerful and all-
pervasive an idea is this that it is difficult to accept that such a system can fail to
evolve.

To expand on this point, Dawkins (1982) described the fundamental agents in
evolution as “active, germ-line replicators”. A replicator is any system which
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reproduces or is reproduced. For example, a piece of paper can be regarded ag Resultsfor Cross Points

a replicator if it undergoes reproduction by photocopying. There is an implicit

assumption that no process of replication is completely reliable so that changes inin this set of experiments the first cross point was again chosen uniformly along the
the form of errors will invariably occur from time to time. Dawkins then classifies all  length of the chromosome but the separation of the cross points was chosen using
replicators according to two orthogonal criteria—active or passive, and germ-line or the Gaussian approximation to a Binomial distribution wittaarying from 0.1 to
dead-end. Active replicators are those whose characteristics affect their likelihood0.9. The experiments were repeated using both inversion, applied with probability
of reproduction, as opposed to passive replicators which reproduce at the same ratgalf, and the random re-linking operatdr, applied with probability 1. (Clearly
regardless of their characteristics. It may seem at first that a piece of paper is ahe rate at which inversion is applied will be of little consequence, given the earlier
passive replicator, but Dawkins points out that its contdatsfect the likelihood of experiments.) Recall that use fftogether with binomial cross point is exactly

a piece of paper’s reproduction, for people are more likely to copy interesting papers equivalent to uniform crossover with the probability of each bit of the mask taking
than uninteresting ones. The distinction between germ-line and dead-end replicatorshe value 1 set to p.

is that germ-line replicators have no linit principle to the number of generations

they can spawn, whereas dead-end replicators cannot ever spawn an arbitrarily largagain, test results are averages over 400 runsffoand f5, and 50 for the other
number of generations. In other words, although the tree of descendents from afunctions, and are shown in graphs 6-10. For reference, horizontal lines are shown
germ-line replicator may well terminate (because it or its descendents happen to failindicating the performance when the separation of the cross points is chosen to be
to reproduce) it need not in principle, whereas the corresponding tree for a dead-enduniform, again using botfi andL. Although error bars are not shown on these, the
replicator is guaranteed to terminate. results are averages over 400 runs, and are small.

The argument then goes that given active germ-line replicators, those which haveThe pattern here is very striking, at least for functiofisto f5, and strongly

characteristics which make them more likely to reproduce are bound, given time, to indicates that there is a small, but definite benefit in transferring roughly half the

come to dominate numerically over those with characteristics which make them lessgenetic material from each parent.

likely to reproduce. Further, the infidelities in the copying process ensure that even

if errors introduced almost always reduce the reproductive fitness of the replicator,

occasionally chance improvements are bound to be made. Thus, given a sufficiently® Summary

long time, evolution is bound to occur. The addition of recombination only en-

hances these arguments provided that the recombination increases the probability ofhis work, in common with other work on inversion, has failed to demonstrate any

producing good (fit) offspring. useful effect of using inversion to re-link chromosomes. The author suggests that the
explanation for this is that linkage does not vary much between the pairs of genes in

This potent argument generates some reluctance to sacrifice the notion of usefullyjthese problems, and that inversion is too weak an operator to make search effective

adapting linkage in genetic algorithms, though it is not hard to believe that the in reasonable time given the relatively small selection pressures available to it.

time-scales involved make its use impractical. For while it may not be immediately

obvious, linkage information is an active germ-line replicator, because although Uniform crossover withp = 0.5 has been shown to perform significantly better than

re-linking a chromosome does not affect its utility, it does affect the (average) utility two-point crossover (with inversion). The differences between these two crossover

of its offspring under crossover. If the problem is that applying a mutation operator operators can be characterised as the greater distributional bias of uniform crossover,

to linkage (in the form of inversion) is inadequate for good search, the way forward and its lower positional bias. The bulk of the difference in performance is accounted

may be provided by permutation crossover operators. for by the distributional bias towards taking half of the genetic material from each
parent.
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Part I1: Conver gence in these cases the aim st to try to get the genetic algorithm to track all of the
optima, which would be a stupendous waste of effort since they are all equivalent:
Much has been made thus far of the global nature of the search which genetlrgtr,],er' the aim is to deV|s_e ways pf allowing the algorithm to recognise an_d fold
. . . out” the redundancy. This work is an attempt to try to understsaowd genetic
algorithms perform, and their robustness over wide classes of problems. There o : S . -
algorithms converge prematurely in the hope that this will provide greater insight

a hint that the search is not always this powerful, however, in Whitley's vVanous s the problem, allowing better understanding of existing results and possibly

results suggesting that the genetic algorithm sometimes fails to search the SPACE L asting new wavs of seeking to resolve it
properly, for if the search remained truly global it is hard to see how the problem 99 9 y 9 ’
of hidden node redundancy could fail disrupt the search for good sets of connectioP0

strategies given his representation. It is, in fact, common for genetic algorithms tg this end a simple problem with a single global optimumis introduced, and then
gies g P ' ' ' 9 9 modified by the addition of a particularly pernicious kind of local optimum. A

converge to the wrong optimum. Many have tried to understand this, and a number . , . o ;
) . : noyel measure of diversity, theéew of the population, is then introduced and used
possible solutions have been suggested, both on theoretical grounds and as a resul . . X : .
: 0 analyse how the algorithm fails to achieve the correct solution. The view seems
of experiment. . T . . .
to give some useful insight into the way that loss of diversity leading to premature
convergence occurs. The results obtained suggest that loss of diversity can occur

The most interesting ways of tackling this have involved the use of “crowding” ithout beina noticed by standard diversity measures. often very early in the course
(De Jong (1975)) “sharing functions” (Goldberg & Richardson (1990)) and isolatedWI Ht being not y WESIY ures, very Vi .

sub-populations (for example, Cohoetnal (1987)). The idea underlying each of of the optimisation.

these approaches is much the same, thggemiation as a way of allowing a popula-

tion to track more than one optimum, though the method for achieving speciation id Framework: The Problem Without L ocal Optima

markedly different in each case. De Jong’s crowding mechanism attempts to ensure

that offspring replace chromosomes which are similar to themselves: it achievebhe simple form of the problem considered is that of finding a particular sentence in
this by comparing the chromosome representing the child to those for each mengke space of all strings of given length composed of letters and spaces. This problem
ber of a randomly-selected sub-population and replacing whichever member of th# simple to understand and has a particularly natural representation as a chromo-
sub-population has the highest “overlap” with the child. Goldberg and Richardson'some. Moreover, there is a natural utility function which awards one point to a test
sharing functions limit the total amount of utility available to individuals in each string for every character in it that correctly matches the corresponding character
“niche”—an area either of the search spatéfor “phenotypic” sharing) or the in the reference string being sought. Formally, each allele on the chromosome is
representation spacg (for “genotypic sharing”). The aim is to generate a popu- drawn from the set

lation which at steady state has numbers in each niche proportional to the utility

of the points in that niche. With isolated sub-populations the mechanism is more Gg={a,a,b,....,'27,'K,'B",...,"2},

basic, simply allowing only low levels of inter-breeding between individuals in oth- . o 0 des a space and single quotes represent some coding of the character
erwise separately-maintained sub-populations. This method is particularly Smtab‘ﬁside, typicallyascii. Then, if the target sentence (global optimumysesn

for implementation on parallel machines. characters, the search spacé is G" and a suitable utility function

Each of these methods has had some success in tackling the problem of “premature p:C—N
convergence”, though the problem is far from solved, but since they are all based on |

the idea of speciation there is a relatively small limit to the number of optima the)}S defined by
can track. This is particularly relevant to studies of neural networks since the levels () = Z Sseos-
of redundancy are high in the kinds of representations typically used. But of course, P
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(045 is the Kronecker Delta, which is 1if= j, and zero otherwise.) This problem o All optima are maximally pernicious: a string feels selection pressure

has a single optimum at, which is particularly easy to find since there is no onlyin the direction of the optimum (or optima) to which it is nearest.
epistasis, deception, or multimodality; no discrete optimisation strategy should fail. The population gains no extra information about other optima as a
The problem as stated is therefore uninteresting, but provides a useful base upon result of the evaluation of a string that can see only one optimum.

which to build difficult optima.

_ - _ 3 Lossof Diversity: Monitoring a Genetic Algorithm

2 Adding Pernicious L ocal Optima

The usual explanation for genetic algorithms’ convergence to the wrong optima is
To state the obvious, and anthropomorphising freely, local optima cause problemsbased on the notion gfemature convergence. What happens under this explanation
because, they lure the genetic algorithm towards points other than the global optimuis that a chromosome is generated which lies significantly closer to a (local) optimum
w. In doing so they can be said tbscure the global optimum, and the more than do most other chromosomes in the population. This gives the schemata it
successfully they obscure it the more pernicious shall they be said to be. The pointinstances a high sample average for utility, so that a great many more instances of
of this remark is that pernicious local optima can be viewed as those which are hardsuch schemata are generated. These quickly come to dominate the population and
to escape because they blind the the algorithm to other optima. the optimisation therefore settles in the local optimum.

To incorporate these ideas, the problem outlined above is modified to include a setThere are two natural ways to monitor population diversity within any genetic al-

Q ofoptima,@ = {w°,w!,...,wNt}. Forreasons described belav, will always gorithm. Monitoring the spread of utilities seen within the population requires
be the global optimum and the oth&1, optima will be local. Having added these, ~ Very little extra work since the utility of each member is at all times needed any-
the utility function is modified to become: ™ —s N where way. Apartfrom possible problems arising from redundant representations (different

chromosomal representations of equivalent solutions) it is also easy, if computation-

p(n) = max o(n,w’), ally expensive, to compute some measure of diversity based upon the chromosomes

wi€Q themselves. A natural measure for many problems is the sum of all pairs of Hamming
n distances between solutions. For the problem described above, and a pop8lation
and o(n,w) = Y Oy (2= Opin) - of size NV, this gives the diversitpA : C¥ — N as
i=1
The motivation for this fithess function is as follows: A(B) = Z Z 2(1 _ 5772”%)
i=1 j=i+1 k=1
e The functions : C> — N gives a measure of the similarity of two wheren! is theith member ofB.
strings.
In the case of the problem already outlined, artificial by its very nature, but for this
e The term in parentheses weights letters twice as heavily as spaces. reason also useful for analysis, there is available a third measure of diversity. This
This ensures that perfectly matching a target string with a given measure reports for each optimum(n the number of members of the population
number of spaces yields lower utility than perfectly matching a target which can ‘see’ it. For the optimum? this is the number of chromosomes
string having fewer spaces. The global optimufhwill have fewer whose similarityo (n,w?) to w is greater than to any other optimumi. Where a
spaces than any other target string chromosome is equally close kooptima each is awarded creditk for its utility.
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This measure will be called théeew Y : ¢V — RI?l and theith component(; of
T (that corresponding to thigh optimumw ) is defined by

TZ(%) = Z ’U(nawz)a
ne’B

0
QI

Z 6#(77)0(177w’“)
k=0

where v(n,w) = u(mo(n.w)

If the genetic algorithm is searching the space thoroughly each comptneoit

T would be expected to be non-zero at least until solutions have been found whi

have better utility than the corresponding optimurh Flat distributions oveil
show the population exploring widely, and will be referred tdoresad views. In

contrast, peaked distributions show it concentrating its efforts around the optim

corresponding to the peaks and corresponthtoow views.

4 Results of Monitoring

As a demonstration of the power of mutation combined with selection pressure

Dawkins (1988)) demonstrated that this process could produce the string

METHINKS IT IS LIKE A WEASEL

The particular genetic algorithm implemented used fine-grained (asynchronous)
update, used crossover all the time, inversion half the time, and gave each allele a 4%
chance of mutation during reproduction. The choice of members for reproduction
was as described originally by Holland (1975), using “roulette-wheel” selection.

The graphs in figures 1 and 2 show the way that the population’sYigts diversity

A, and the utility of its best solution vary with the total number of solutions which
have been assessed. Notice that a logarithmic scale is used oraitie to allow
important detail in the early stages to be seen. Each line on the graphs showing
the view corresponds to one optimum and shows the number of members of the
population which can see that optimum. Twenty runs were performed with these
parameters, and on four occasions the global optimufy,was found. Figure 1
ﬂwows that in these cases after only 1000 sentence evaluations every string could see
only that optimum. Notice that at this stage the best solution in the population has
a utility of only 16 compared with the optimal 51, and the diversity appears to be
gecllnlng smoothly: the genetic algorithm has not converged, and takes an order of
magnitude longer to do so.

Of the twenty runs, another four resulted in convergence to optimdmFigure 2
shows a very similar pattern averaged over these four runs.

% Discussion and Implications for Gannets

The results above reveal an interesting and perhaps unexpected phenomenon. What
is seen is not so much premature convergence as a premature clustering around a

very quickly. Expanding on this example the following five sentences have beesingle optimum. The solutions are not particularly close to their “chosen” optimum

chosen as the optima.

Methinks It Is Like A Weasel (w")
Premature Convergence (w")
A Local Optimum (w?)
One Two Three Four Five Six (w”)

()

Francis Bacon Writ This

at this stage, but they are all closer to it than to any other. This is the case even
though the level of diversity as measureddys high over the population.

As has been emphasised, the optima studied thus far in this paper are deliberately
pernicious, and it seems probable that few real applications will involve optima as
difficult to escape as these. It is not so much the fact that the population gets stuck
in a slightly less good optimum than the best that is worrying as the very early stage
at which it stops exploring other areas of the search space. The results suggest that
the problems usually associated with premature convergence may if fact emerge far
earlier than is usually thought to be the case.
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In the context of genetic training algorithms for neural networks, these result§ine-grained update, which Holland (1975) discussed, and rank-based selection
are slightly more double-edged. Some surprise was expressed earlier that Whitllowing the lead of Baker (1985). Holland’s recommendation, however, was
ley (Whitley (1987?), Whitley, Starkweather & Bogart (1989), Whitley & Hanson that the member of the population to be replaced was chosen uniformly from the
(1989b), Whitley & Hanson (1989a)) consistently claimed to be able to train neurapopulation, to ensure the same statistical behaviour as for coarse-grained (“syn-
networks with genetic algorithms despite his having made no apparent attempt hronous”) update, whereas Whitley discards a low-ranking individual. This is not
tackle the permutation problem for hidden nodes. Commenting on these resulta,particularly uncommon practice: (Syswerda (1989), for example, describes using
Belew, Mclnerney & Schraudolph (1990) write: inverse-ranking to determine deletion in “steady-state genetic algorithms”) but is
non-standard. Moreover, he claims (Whitley (1989)) that ‘[rlanking, coupled with
one-at-a-time reproduction gives the search greater focus. On@@ENTOR
algorithm finds a good genotype it stays in the population until displaced by a better
string. This means that the algorithm is less prone to “wander” in the search space
and will maintain an emphasis on the best schemata found so far.’

If very small populations are used with the GA, there is not “room”
for multiple alternatives to develop. In this case, whichever solution is
discovered first comes to dominate the population and resist alternatives.
This approach has been used by Whitney (sic) (Whitley & Hanson
(1989b)), and in some experiments of our own (Wittenberg & Belew
(1990)). The results presented here have suggested that there are occasions when genetic
algorithms cluster around one optimum rather early in the search. In fact, this
Whitley’s various reports do not entirely support this interpretation, and slightlyresearch (which was one of the first genetic algorithms the author used) used an
more complex effects could be at work, especially since he reports that increasirggorithm that bore some similarities to Whitley's Genitor: indeed, at one stage
his population size from 200 to 1000 produced a performance improvement, fofials used inverse rank-based deletion (so that lower ranking chromosomes had a
example, on the 4-2-4-adder problem (Whitley & Hanson (1989b)). He places gredtigher probability of begin replaced than higher-ranked ones) but this was abandoned
emphasis on the differences between his genetic algorithm, which he calls Genitdrecause of poor results. Indeed, it would be expected that biasing deletion towards
and “standard” genetic algorithms. To quote (Whitley & Hanson (1989b)): the bottom would increase the probability of premature convergence and clustering
around optima as described. Whitle\@ENITOR package has been used for
various problems, including standard suites, but seems to have concentrated on

GENITOR is an acronym forGENetic Implemerl’OR, a genetic ' _
gannet problems. For example, he writes (Whitley & Hanson (1989b))

search algorithm that differs in marked ways from the standard genetic
algorithms originally developed by John Holland and his students. In a

standard genetic algorithm, the parents are replaced by their offspring
after recombination. The idea is that the parent’s (sic) constituent

hyperplanes have a good chance of surviving. Thus, the genetic material
of the parents may survive and remain in the population, although the
parents themselves do not. In tB&ENITOR approach the offspring

do not replace their parents but rather a low ranking individual in the

The standard genetic algorithm has been tuned on [De Jong’s functions]
for over a decade (De Jong (1975)). The optimization problems posed
by neural networks provide a new and more challenging test of genetic
algorithms.

In this context it is possible to begin to understand how it is that Whitley achieves

population. Another key difference is that ttd’NITOR algorithm is
designed to allocate reproductive trials to genotypes based on their rank
in the population rather than an absolute measure of fithess relative to
the population average (Whitley (1989))

his results with gannets. With Genitor, the top-ranking individual in the population
will remain in place until succeeded by an individual with higher utility, and this
top-ranking individual will receive the largest number of reproductive trials. This
means that its replacementis very likely to be one of its own progeny, inheriting most
of its characteristics. This, combined with the fact that the members deleted from the

There is nothing particularly unusual about any of these variations: Genitor usgsopulation are always of low-rank will tend to result in a kind of “gauge-fixing”: in
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effect, the environment is very hostile towards any chromosome which does not use
its hidden nodes in a way similar to the fittest individual. Any scepticism about this
explanation might be assuaged by noting that the problems Whitley typically studies
(Whitley & Hanson (1989b), Whitley (1989), Whitley & Hanson (1989a)) are the
4-2-4 encoder, 2-2-1 XOR and a 2-4-3 adder, the largest of which only has a potential
4! = 24-fold symmetry. As Whitley & Hanson (1989a) note, genetic algorithms
must be tested on very much larger problems than those they have tackled: the
author’s strong suspicion is that these will prove very much more difficult to solve
using Whitley’s methods.

Gannets

Equivalent Neural Networks 59

The Permutation Problem Revisited 59
Unbounded Problems 63

Discussion 63

Longevity, Fecundity, Fidelity
— RICHARD DAWKINS, Replicator Selection and the Extended
Phenotype (1978)
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1 Equivalent Neural Networks relation which while easy to specify precisely in the abstract, would be almost

impossible to express in a form which allowed the formae to be extracted, and
If the work in chapter 5 is to be taken seriously then the principal gquestion whickgenetic operators to be designed which manipulated these formae usefully. But this
has to be addressed is ‘When are two neural networks equivalent?’, for it is this more a failure of the kind of equivalence relation chosen than thie satetworks
development of appropriate equivalence relations which allow the selection of properonsidered, for it is no more reasonable (or perhaps even desirable) to expect an
formae, and once these are known the task of finding suitable genetic operators feguivalence relation to capture all functionally equivalent networks than it is to ask
their manipulation is a very much more restricted and manageable one. The questione to extract all points of the same utility for a general problem. Moreover, it will
as stated, however, is not well posed, for it is not a single equivalence relation thawot necessarily be the case that all functionally equivalent networks will be awarded
is sought, but rather a set of equivalence relations, preferably separable, with ttiee same utility; for example, other things being equal, small networks might be
property that compatible formae induced by them close under intersection. Despi@warded higher utility than larger ones for their parsimony.

this, it is useful to consider the maximum precision equivalence relation that might
be sought. Instead of looking at functional tests for equivalence, it might be sensible to consider

when two networks are similar in terms of their structure and likely chromosomal
One relation it is tempting to impose would classify two networks as equivalenrepresentation. Suppose that a netwtkis obtained from\" by the application of
if they produced the same output for all possible input patterns. Such “functiona$ome operatol’. Under what circumstances might the mapping performed by the
equivalence” would subsume trivial equivalences such as the equivalence betwedmo networks be expected to be similar?
two networks that are the same up to a permutation of hidden node labels, and
would further capture equivalence between two networks one of which had som&o repeat a point made tediously often already, but which will continue to bedevil this
completely redundant connections, or which implemented with several nodes study, if the operator does no more than permute hidden node labels then the operation
function which another network implemented with one node. It would in fact gois essentially null, and there is guaranteed to be no change in the performance of the
further than this, for in principle there might be two networks with completely network. This immediately suggests tlaly equivalence relation used to induce
unrelated internal structures which happened to perform the same mapping, aflermae ought notto distinguish between networks onthis basis. Further, agreat many
this equivalence relation would identify these. The set of netwdtkas been so  networks are known to be little affected by the deletion of a small number of weights
broadly defined that there will always be such dissimilar but functionally equivalentso it might be appropriate to examine equivalence relations which associate networks

networks if only because given any network that have a large number of common weights. If the activation functigrsd”
used are continuous and reasonably smooth it would additionally be expected that
A - R RIOI T . : o .
: — ) small perturbations in weight values (or indeed the activation functions themselves)

o , i , i . would have relatively small effects on the network’s functionality, suggesting another
a network which is functionally equivalent can be defined simply by making thepossible set of formae.

activation functiorw; of the jth output node the same as tfth component of\V’
and giving full connectivity between input and output nodes, omitting to use anyj; is not difficult to extend this list in the abstract, but it turns out to be extremely
hidden nodes. difficult to turn any of these into useful formae. In order to see why it will be useful

) ) ) ) _ to return once again to the hidden node permutation problem.
Of course, this example is of no direct relevance to the real case, for in practice

the set of available activation functions will always be restricted, and in any case . o

the example given is directly contrary in spirit to the conventional neural networks2 The Permutation Problem Revisited

approach, where ideas of distributed representations, fault tolerance and neural

plausibility are all to greater or lesser extents important. It is also an equivalenckn order to emphasise how difficult is the problem of folding out the hidden node
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redundancy, the problem of aligning network topologies will be examined. An so that
algorithm will be introduced which constructs a standard ordering for any 3-layer, Ne
feed-forward network in such a way that network topologies which are equivalent E= U {ej}-
up to permutations of hidden node labels are mapped to the same “standard” rep- =t
resentation, and non-equivalent networks map to different representations. What isThen the problem is effectively transformed into a two-layer problem without loss
meant by this is essentially that if the networks are drawn on paper in the manner ofof generality. Let the connections between a hidden iode and external nodes
figure 1, with the hidden nodes in numerical sequence, the same picture will resulte, € E be represented by a connectkihwhere
from networks which are equivalent up to permutations of node labels if the ordering
prescribed by the algorithm is used. i o [ 1, if h;is connected tey,
%= { 0, otherwise,
DEFINITION The termtopological connectivity shall refer to those properties of a
connection diagram for a neural network which are independent of the labelling of so that the upper label erefers to the hidden node and the lower one to the external

the hidden units. Two networks will then be said totbpologically equivalent if node. The introduction of an index set
they have the same topological connectivity, i.e., if one may be transformed into
the other by a permutation of the labels of the hidden nodes. Notice that, trivially, Z é{l, 2,...,Np}

topological equivalence is an equivalence relatian.
to label the hidden nodes facilitates the description of the algorithm. An arbitrary

DEFINITION A description of the connectivity of a network shall be calledep initial ordering is imposed upoH so that

resentation of that network. Representations may refer to hidden units by labels,

though these will be understood to be arbitrany. H = U hj,
j€zZ

ALGORITHM (Constructing a Standard Representation for a 3-layered Net)
but it should be understood that this is not the ordering that the algorithm produces.

Given a sefl of input nodes In order to follow the description of the algorithm the reader may find it helpful to
. refer to figure 1, which presents a worked example.

I = U {i;}, g P p

= The algorithm begins by inductively constructing a sequeffée*} of sequences

a setO of output nodes {H¢} of sets of hidden nodes. The initial séfg are defined by

0=Utor},

H'=H
. . . , 1 k — if thi i - 1
and a set of hidden nodés having cardinalityV,, defineN, = N; + N, and let H} 2 { {hlk €H;_, | c; 1}7 if this sgt is non-empty, (La)
E =IUO. Label the elements df by defining new labels for the external nodes Hj 4, otherwise.

e;,,1€{1,2,...,N.} as ] ] ) )
[Thus H{ comprises those hidden nodes connecteel; tprovided that there is at

s iy, if j <N, least one such node. If there is néf} = Hi(= H). H} is then constructed by
€= oj—n;, Otherwise, taking all those nodes if/{ which are connected te,, again provided that there
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Figure 1: Constructing a standard representation

The diagram at the top shows the original network, and the one below
shows the network after transforming to a single layer. In the deriva-
tion below, the primed values are the hidden node label assignments
furnished by the algorithm.

Hi = H; Hf = {hy,ha,h3, }; Hy = {h3} = H.; => h}| = hs.
H2 = {hy,ho,ha,hs }; H2 = {hy, by }; H2 = {hy} = H?; = B, = hs.
HS = {hy,ha,hs }; HY = {hy} = HY; = I, = hy.
Hi ={hy,hs }; HY = Hy; Hy = Hy; Hy = Hy;
Hy = Hy; Hi = Hy; Hg = Hy = Hy;
— I, = ha, h = hs Or b}, = hs, Bl = hy.
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is at least one such node; otherwiggl = H!. This process continues recursively
until the termination condition described below is reached.]

Such sets are generated for increasjngntil either a singleton is produced or

H), has been reached. In the former case the hidden unit in the singleton has
successfully been identified as having different connectivity from all other units,
and it may thus be labelled with the first free label from the indexZetn the

latter case a set of hidden units have been identified all of whose members share a
common connectivity. Formally,

VkeZ (hyeHY) VK'€Z (hyeH) VIELy, (e/€E) (cf =1 & ' = 1).

These cannot be distinguished and may labels may be distributed to them arbitrarily.
Let n, be the number of nodes in this set, select the nexiabels from the index

set and distribute these over the element&of In either case letl, be the set of
elements so far successfully labelled.

After this process at least one node is guaranteed to have been labelled. Having
generated an initial sequence of sgi§| }, further sets{ H¢ } are now inductively
generated in the manner described below, proceeding dg#d} to generate ever
smaller subsets until only equivalent nodes remain—those with the same external
connections. Specifically, define

a—1
Hy=H\ | HE.
k=1

and by induction on define

oo {hreHs | |k =1}, ifthis setis non-empty, (1b)
J P otherwise,

until either a singleton is produced or run out of external ngdestest against.
This process is exactly analogous to the one described{ﬂolexcept that some
nodes have now been deleted from the initialZ8gt Again, the final set is denoted
H2 and contains only equivalent nodes. An appropriate number of the remaining
unused labels are drawn in sequence from the indeX setlabel these units.



When the inductive processes described above have been exhausted, all hiddennodesd in the latter case
which are connected to at least one external node will have been labelled, and this

labelling will be well-defined up to permutations of nodes with identical connections {"hy, €"H ¢ | ck =1}, ifthis setis non-empty,
. - . . nH® — j—1 J ) _ ’ (4)
to external units. The only remaining task for the procedure is to label those hidden J HE otherwise.

nodes with no external connections. Yet these are manifestly equivalent to each
other, so they may be arbitrarily labelled using the remaining indices from the index o -
set. This completes the algorithm, all hidden units having been assigned a Iabelling.SUbStItUtlng in (3) from (2a) and (2b) gives:
]

THEOREM Given two representationsand( of 3-layered networks the algorithih
will furnish new representationg and{’ (respectively) such that

‘Hf otherwise.

Ho = { { iy €HS | "c;.r(’“) =1}, ifthis setis non-empty,
But of course, in this@le 7 (k) is simply acting as a label running over the elements
1. If ¢ andn are topologically equivalent, thed = 7’ in a set, which could validly be replaced by« (k) is merely a perverse choice of
dummy variable. On making this substitution it can be seen that
2. If ¢ andn are not topologically equivalent, then # »'.

v s .
Proof o — {"hpeHy | | ek =1}, ifthis sgt is non-empty,
J Hf,, otherwise,
To verify that the algorithm does indeed take different representations of topolog-
ica”y equiva|ent networks to a common representa‘[ion assumertmwh is a which shows that the sets defined by the algorithm with respect to the two represen-
permutation of the labels of the the hidden units of two topologically equivalent tations ¢ and¢) at stepx are identical provided that this was true for previous steps.
networksy and(¢ for which An almost identical argument applies to equation (1a), and when this is performed
this completes an inductive proof that the sets are indeed the same since the initial
VEEZ : "hu(ry = hy. (2a) set for the inductions ig7 in each case. Thus the labelling of the hidden nodes,

which depends only on these sets, must be the same under these two representations

Leading superscripts like these will consistently be used to indicate which network up to permutations of equivalent nodes, which are indistinguishable.

a quantity is defined with respect to. Then by definition,

VjeZ VkeZ : nc;f(k) _ gc;?. (2b) This suffices to _demonstrate_that the subs_ets pr(_)duced by the alg_orithm are th_e same
when the labellings of the hidden nodesjimre simply a permutation of those in
In the algorithm the labellings of the hidden units are determined only by the (, and thus that different representations of topologically equivalent networks are
sequences of sets generated, and these are governed by the equations (1a) and (1bapped to a common representation by this algorithm. It should be immediately
Comparing equation (1b) for the two representatioasdr, in the former case: apparent that topologically non-equivalent networks cannot possibly ever share a
representation, and so provided it is accepted that the algorithm does indeed furnish
(3) a valid representation of any network the proof is complete.

J ‘g otherwise,

v . .
o — { {hxeH§ | | %k =1}, ifthis setis non-empty,
i1

Constructing a Standard Representation for a 3-layered Net
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3 Unbounded Problems diate mapping that translates the chromosomes into trial parameters.
These triggered operators are controlled through three types of inter-
One of the difficulties of genetic training techniques that has not really been discogé@aeasurements performed upon the chromosome population or the
here is that even when the problem is restricted to finding good combinatiopeilation of trial solutions.
weights in the context of a network with fixed topology and activation functions, the
parameter space is unbounded. This problem was alluded to by Belew, Minaefgejntroduces the notion of “roving” parameter boundaries, which move when
& Schraudolph (1990), who avoided it by searching only for sets of initial Wgigiegulation clusters near them. He further has various techniques for changing the
which a gradient technique would subsequently take as its starting point, butgs@Attien of the genes coding parameters and for effecting various other apparently
a serious problem, and one not restricted to the domain of neural networks!seful changes. His methods certainly offer a way forward, and undoubtedly deserve
further investigation, but seem to involve sacrificing some of the analytical machinery
It might be thought that this problem would disappear if connection strengél@v@leped, something which will be accepted only reluctantly.
to be stored as floating point values, which certainly take on sufficiently wide range
of values for these purposes, but while this overcomes the storage probleFhéwagghat Whitley tackled the problem (Whitley, Starkweather & Bogart (1989))
not tackle the question of ergodicity satisfactorily. The work in chapter 5 sugge¥stegrssimply choosing a large weight range and relatively low accuracy—usually
set of formae suitable for use with smooth, real-valued functions, the locality-fb?intgel 27 with zero occurring twice, and using the standard operators to explore
(half-open balls), and the simple random, respectful crossover operator for thesangss Montana & Davis (19897?), in contrast, used floating point weights with an
“flat crossover”. While no particularly strong case is being madé&fopperatorigitial distribution given by an exponential. They then ensured that the whole space
this work, flat crossover seemed to work reasonably well for a surprisingly witlescaggessible through a number of their operators, including a gradient operator, a
of functions and would seem to be a reasonable choice of operator for recoittiRiyoperator that generated values from the same distribution as that used to
weights, once they have been suitably aligned. The question of countersegifighigsinitial population initial distribution and another “creep” mutation operator
bias towards central values, however, is rather harder to overcome in the unbétihaedurbed weights by values taken from the initial distribution. On the whole,
case, for “extremal mutation”, at least in the simple form presented thus fathis aeheme is more appealing than Whitley's, but still feels rather arbitrary.
satisfactory solution in an (essentially) infinite space.
If flat crossover were to be adopted, perhaps the most natural approach would be to
Various ways of tackling the general problem might be considered. One of fih@nit@isthe maximum and minimum value for each weight across the population
interesting studies relevant to this discussion is the “ARGOT” strategy ofé®liiefepe a mutation operator which inserted values beyond, but not very far outside
(1989). Argot is not really a genetic algorithm in the sense described sdhrapge defined by these extrema. This would seem to satisfy the requirements of
it is an adaptive system of broadly the same ilk, employing selective reprédgegisiy and tackle the bias inherent in flat crossover, and perhaps has relevance to
the same idealised genetic operators and so forth. The critical difference Rtfgitaperators. No systematic experiments have yet been carried out to investigate
mapping these ideas, largely because the work on formae has only recently been completed,
g:C—S but there seem to be some grounds for hope that this form of mutation would allow

] o . . _ flat crossover or similar operators to be used satisfactorily.
which effects the morphogenesis is itself subjected to adaptation. Quoting Shaefer

The ARGOT strategy consists of a substructure, roughly equivalen} DISCUSSION

to [a standard genetic algorithm], that employs crossover, mutation,

and selection to perform the standard, implicitly parallel, hyperplaneThe construction of a standard ordering for three layered, feed-forward network
analysis, plus numerous triggered operators which modify the intermetopologies can be extended relatively trivially to deal also with weights provided
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that exact matching is required. Essentially the weights are cycled though on theSchraudolph (1990), who write

basis of their external connectivities to resolve any ambiguities in the hidden node

ordering generated by the algorithm given, priority in labelling being given (say) to It seems, for example, that at least in the case of BP networks with a
the highest-valued weights. The lifting of the redundancy inevitably makes appeal to single hidden layer, the differential weighting of the “anchored” (i.e.,
the external nodes and connection strengths between hidden and external nodes, for constant and nonarbitrary) input and output layers might be used to

itis these which araot arbitrary and allow the redundancyto be lifted. There are two recognize similarly functioning hidden units. Even establishing corre-
principal obstacles to using these methods to sort hidden units before recombining  spondence among the hidden units of two three-layer networks which
the chromosomes representing the networks under consideration. have been trained to solve the same problem appears to be computation-
ally intractable, even when we assume that the only difference between
The first is simply the computational intensiveness of the algorithm. Although the two networks’ solutions is a permutation of the hidden units. In

more efficient algorithms that the one given can undoubtedly be devised, itis hardto ~ ré@listic networks many other different solutions to the same problem

imagine one which would notinvolve a fairly large amount of computation compared can be constructed, for example by re_ver_s;ng the sign of all the weight,

to other genetic operations and the evaluation of a network’s performance over a  ©F taking other “semi-linear combinations®. We therefore conclude
reasonable-sized training set. But even if the time could be afforded, a much greater ~ that attempting to normalise networks before combining them is not

problem lies in the fact that the algorithm implements a mapping which is highly feasible.

discontinuous. In the case of network topologies (where the notion of continuity is ) ) ) o B )

not strictly applicable, but where one can still talk loosely of mappings which take T"US the picture is somewhat depressing: having identified early in the work a fun-
neighbourhoods to neighbourhoods) the swapping of a single pair of connections, Ordamgntal difficulty facing the application of the mac_hlnery of genetic algorithms to
the deletion or addition of a single connection, would be likely dramatically to alter training neural networks (the ever-present permutation problem), the course adopted
the standard representation furnished by the algorithm. In the continuous case, ifVaS t0 investigate extensions to the formalism of genetic algorithms which would
redundancies are to be lifted by sorting weights, perturbing a weight in such a Wayjusufy the use of non-string, and more pa_lrtlc_ularly non_—blnary representations. Th_|s
that its value remained bounded by the weights from the network which previously WOrk was reasonably successful, resulting in the notion of formae as an extension
bounded it would have no effect on the “standard representation”, but crossing one®f Holland's original schemata, and allows powerful analytical machinery to be
such boundary would again be likely to have catastrophic effects. It is hard to br_ought to bear on more geperal sorts of.genetlc algorithms, using operators defined
imagine algorithms which do not suffer from such non-local behaviour not merely at with respect to general equivalence relations. The formg analysis has been shown to
afew points irf) -, but over much or most of it. In these circumstances the algorithm be qune useful in a number of problem areas, and certainly allows the gqals towards
is computationally useless, for ultimately there is no interest in recombining two Which work on Gannets needs to progress to be formulated more precisely. Sadly,
nets which are identical up to hidden node permutations: this cannot yield new how_ev_er, after such a reformulation the problems look more daunting than ever. One
information, at least from a respectful operator defined with respect to formae that thesis is not enough.

are invariant under hidden node permutations. Instead the interest lies in making

the best possible match between two networks before recombination to ensure that

the maximym amount of useful informatio_n is preserved. Thus however (J!esirable it A child of five would understand this.

may be, it is hard to see how Qperators will bg able to be cc_mstruc;ted wh|ch.respect Send somebody to fetch a child of five.

and pro.perlly assogny formae mduceq by equivalence relations YVIth the desirable — GROUCHO MARX, Duck Soup.
properties listed above, even supposing that these could be defined.

. ) 28 \We speak a bit loosely here. Because BP networks depend on nonlinear “squashing” functions,
All of this goes some way to reinforce the comments of Belew, Mclnerney & simple linear combinations are not quite adequate. (Betea/ s footnote.)
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1 MIMD Machines

Much of the work in this study was carried out on a large parallel computing
device known as the Edinburgh Concurrent Supercompates)( This machine is

a Meiko Computing Surface, consisting of several hundred Inmos T800 floating-
point transputers together with suitable supporting hardware. A transputer is a
“computer on a chip”, having a central processing uaity) which performs the
main computations, a floating-point unit{u) for fast floating point computation,
4Kbytes of on-chip memory and four bi-direction communications links, each having
a pair of link controllers. In th&cs, each transputer has an additional 4Mbytes of
dedicated external memory. There is parallelism built into the transputecrtine

FPU and the eight communications links can all process simultaneously without
degradation in performance. Pairs of lidkérom two processors may be connected
together without any intervening hardware to form a pair of communications paths
between the processors. Each transputer can be connected to up to four others in
this manner. In the&cs these connections may be made electronically in a process
known as electronic reconfiguration.

There is no shared memory in thes so in order for different transputers to
share data they must engagamessage passing. Communication between pairs of
processors not directly joined together is achieved by explicitly routing messages
across the processor network, each transputer in a chain leading from source to
destination processor passing the message forward. For this reasorstisean
example of a message-passing architecture. Itis aladtgpleinstruction, multiple

data (MIMD) machine because different processors in a single processing network
can simultaneously perform different sequences of instructions on different data.
This contrasts wittsingle instruction, multiple data (siMp) machines where the
same operation is performed on an array of data simultaneously, and with vector
processors in which data is sent along a pipe-line through a series of processors,
each of which performs some specific task.

The termlink will be used to denote variously a unidirectional communications link to or from one
transputer, the connection formed when a pair of such links are joined, an in-out pair of ‘half-links’ to or
from a transputer, and the pair of connections formed when two such pairs of half links are joined. This
abuse is standard, and it should always be clear from context which use is intended.
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2 Topology 3 Compact Graphs

Processing on reconfigurablemMp machines such as thes is a new and relatively It will be helpful to introduce notation for discussing graphs. It is conventional to
poorly understood field. One of the key questions in this area concerns networkregard a grapli{ as comprising a set adges, which correspond to the link-pairs
topology: given a reconfigurable machine such as:the what pattern of processor described above, angrtices, which correspond to the nodes or processors. The
connectivity will obtain maximum performance from the computing surface? In number of links (edges) emanating from a node is calledthg o (or valency) of
some cases the communications pattern make the best connectivity very obviousthat node, and the arity of the graph is usually taken to be the highest arity of any
For example, if the problem under consideration is two-dimensional, and the parallel node in the graph. The set of graphs of atityr less, having. nodes will be denoted
implementation is achieved by a geometrical decomposition of the data over the K (a,n), with K., = K (o0, Z$ )—the set of graphs of arbitrary arity and size. It is
computing surface, then provided only local information is needed it will not be convenient, giveri, to let K * denote the set of the graph’s nodes and then to take
possible to improve upon a two-dimensional square lattice. Given a more generalthesize of the graph to be the number of nodes that it has, sompE | K*|.
communications pattern, however, the issues become much more complex.

The graph-theoretic measure will be used when considering the ‘distance’ between
The approach taken here is to define a set of measures of the expected performangg,q nodes. Given a grapi,
of any processor graph, to examine various graphs in the light of these performance
measures and to use the measures as objective functions in optimisation schemes st K*x K* — It
for constructing processor graphs. This approach is useful provided that there is
some reason to believe that the performance of programs is governed by the sorts Oéives the distance between a pair of nodlaad; as
measures constructed.
Before defining these measures, it will be useful to make a general few observations 5(i, j) = min { number of edges traversed intravelling from:i to j on &'} .
about some of the factors that limit the performance of processor networks. Min-

imising the distance that each message has to travel is almost always desirable, part . .
9 9 Y P ﬁ;&/o measures will be used to measure the compactness of a grapdiastieter

because the time taken increases with the distance, and partly because the greater t : )
and themean inter-node distance ..

number of links a message has to traverse, the greater is the proportion of the tota
link bandwidth of the processor network it occupies. On systems where the routing
is performed by thezpu, every extra processor that a message has to be routed
through reduces the amount of useful computation which that processor is able to
perform, providing another reason for seeking to minimise message distances. Thejs defined by

distance between two processors will be taken to be the graph-theoretic distance, D(K) 2 ax s(i, )
defined below. This amounts to an assumption that latencies introduced by travel- ijeks 0
ling along wires do not depend significantly on the length of the wires. One aim
therefore, will be to produce graphs which aoenpact. At the same time, however,

it will be important that graphs beell-balanced in terms of the likely use of each
(processor) and link, for if many messages need to pass through a small number o
processors or links, bottle-necks will develop and gains from compactness will be
lost.

Thediameter of a graph
D: Ky — Zar

' the maximum graph-theoretic distance between any pair of nodes on the graph. For
example, graph 1 has a diameter of 4.

tI'he mean inter-node distance of a graph

LKoo — RY
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Graph 1

Figure 1: Three generations of Moore Graphs

Regular Lattices

Figure2: Regular Lattices
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is the mean distance between each of|#i¢* (ordered) pairs of nodes:

1 .
L(K):W > slisg).

ijeK*
For example, Graph 1 has= 1.5.

Diameter is a useful measure for applications which are tightly-coupled, so that
the greatest communication time in the system dominates the speed at which the
entire application runs. This is the case, for example, with a distributed calculation
in which every processor in the system needs to know the result from every other
processor between each step of the calculation. Mean inter-node distance, on the
other hand, is an appropriate measure when the communications pattern is not pre-
determined and any pair of processors are approximately equally likely to need to
communicate with one another. A distributed data base would be a good example
of this, as would any application for which scattered-spatial decomposition would
be appropriate (Fox & Furmanski (1989)). In genetadjives a good indication

both of the number of nodes in the network which are involved in sustaining a
typical ‘conversation’ between two nodes, and the amount of link bandwidth such a
conversation absorbs.

4 Well-Balanced Graphs

At least three measures are useful in determining whether a graph is likely to suffer
from bottle-necks. Clearly the load on the network is heavily dependent both on the
pattern of communications being performed, and on the routing strategy being used.

It will be convenient to define measures based on the case where every processor
(node) in the graph passes one message to every other processor, and to itself, each
unit time-step. The routing strategy used will be a random one based on shortest
routes, now described.



Random-Routing Strategy R Finally, it is useful to define a quantity called tharrowness (or “worst-cut”) of a
graph. The idea behind narrowness is to try to gauge the worst communications-to-

e Whenever a processor holds a messsgeuteto another processor, calculation ratio for any part of the network.
atleast one of its links will lead to a processor closer to the destination
processor. Given a graphk, let S(K') be the set of all subgraphs &f andS,(K) be the set
of subgraphs o containing no more than half df’'s nodes. Let the number of
e If there is only one such link, it is used, but where there is more link-pairs from a subgraph € S(K) to the rest ofK” be £[S]. Then the narrowness
than one link which satisfied this condition a random choice is made v(K) is defined as
between these links. D) 2 1S

= Imax .
) Sese(K) L[S]
Clearly, under this strategy, every message travels along a route of minimum lengthl_arge values of narrowness correspond to poor communications-to-calculation power
from source to destination, but different messages between the same pair of procestor some group of processors in the network. Ideally, since the processing power of

sors may use different paths. the network is fixed, every processor should have as much communications power
available relative to its processing power as is possible. Low values for narrowness
Themost-loaded link load are therefore desirable.

A Koo — Rg
i _ _ i It seems likely that any ‘narrow’ graph will have a relatively high most-loaded link
is defined to be the maximum number of messages carried, on average, by any paif,q; since high narrowness indicates that a small number of links will carry a lot of

of links in the network as thgf(|* messages are passed under the random-routing message traffic. Itis, in fact, possible to bound the narrowngks in terms of the
strategyR. For example, the following table gives the load on each of the links in 1, st-loaded link load (K).

graph 1, and it can be seen that the heaviest load here is 10. In this example, all the
links happen to carry integral loads, but in general link-loads can take on fractional consider again the case where every processor in the network sends one message to
values undefs. every other processor in the network, and one to itself. Given a subgrah(K)

. let S be that portion off not included in the subgraph. Then cleai$j < |S],
link ab be be ce de ef S . . .
load 10 9 9 9 9 10 (from the definition oS, (K')) and since no link in the system carries a load greater

thanA(K), B
Similarly, themost-loaded node load (or ‘worst through-routing load’) 2|£S[|;]S| < MK).
kKo — R (This follows because the links joining tif£to S must carry at least thg|S||S]

messages between them.) Rearranging, and using the definition of narrowness
is defined as the maximum number of {i#€| 2> messages routed through any node above,

under strategji. For the network in graph 1, the following node loads are obtained: v(S) = max st max LI_{)
ses. (k) L[S] ~ ses.(k) 2|9|
node a b c d e f SinceA(K) is fixed andS| < |S|, it must be the case thi| > |K|/2. Thus
load 11 20 15 15 20 11 A(K)
v(S) < —.
K]

Notice again that in the general case node-loads may be fractional.
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5Moore Gr aphs “full shells” together with a partially-filledr + 1)th shell containing.’ nodes. Then
the mean distancé of nodes fronk is

It is quite easy to derive tight lower bounds on the diameter and mean internode

distance for any graph of fixed arity and size. Moore used simple arguments (Moore 1

(c.1956)) to place a bound on the number of nodes that could be present in a graph™ |K|2

of given diameter having nodes with a given arity. His arguments can be inverted to

compute bounds on the diameter, and the mean internode distance as follows.

(0.1+1.a+2.a(a— D+3.a(a—1)*+---+r.a(a—1)""'+n'.a(a— 1)T>

since at distance O there is one node, at distance 1 thedeamd so forth. Summing

. . . the series gives
Consider some nodec K*. The maximum number of nodes which can be at 9

distance one from is a, the situation when every link connects to a different node.

Each of these nodes can then be connected to a maximum dfother nodes, so a (T(a —1)r - (a—1)" — 1> +(r+1)n'
that at most(a — 1) nodes can be at a distance two frémPlainly the sequence of V> = a—2 a—2
maximum numbers of nodes that can be present at any given distance (figure 1) is: - | K|

distance 0 1 2 3 " J This is the %-bound”.

number of nodes 1 a ala—1) ala—-1)% ... ala—1)71

Thus the maximum number of nodes that can be within a distBnokany nodek 6 Regular Gr aphs

is
n<l+(a+ala—1)+ala—1)7?+ - +ala—1)P7") The vast majority ofMIMD machines are configured in what might be termed
D1 ‘regular topologies’. The Venn Diagram in figure 2 suggests a classification scheme
=1+ ala —1)" for these. Simple grids consist of a regular lattice (in any number of dimensions) on
—0 which there are connections between nearest-neighbour sites only. To each simple
a ((a —1)P - 1) grid there corresponds a torus, which is obtained by connecting nodes on opposite
=1+ (@a—1)—1 (1) edges of the simple grid. The special case where the extent of a simple grid is
two in every dimension gives rise to the class of binary hypercubes, which in even
Solving for D gives dimensions are also tori. Remaining ‘regular’ topologies include the helical torus,

and the chordal ring, which are topologically equivalent.

D2, (270D ).

The following discussion will focus on tori, for these always perform better than

simple grids. Arity four will usually be used for examples because transputers have
This gives the D-bound”, a lower bound on the diameter of any graph. A graph for four links. Where appropriate, binary hypercubes in higher dimensions will also be
which the inequality is in fact met is called a Moore graph: in this case every nodeliscussed. In order to provide a reference against which to measure, most of the

is at the centre of a branching tree as shown in figure 1. comparisons will feature thB- and:-bounds, as well as ‘random graphs’.

A bound on the mean internode distancean be obtained in similar fashion.
Consider again some nodeand assume that it consists of a Moore graph with

69



7 Random Graphs

As well as comparing regular graphs to theoretical bounds, it would be useful to
devise some kind of a reference which represented an “average” or “random” graph.
It is theoretically possible to sample the entire set of graphs of given size and arity
and to compute mean values for the various measures defined above. This might be
thought to give a guide to the expectation values for these properties if a graph were
to be built by connecting all the links up at random. A procedure for building such

a graph is formalised in algoritha:

Algorithm 2

1° Begin with a graph having all the nodes present but no links.

2° Repeatedly select from the set of all unconnected links any pair and

join them together. O G—o O O

3° Continue performing step 2 until all links have been conneéted.

An obvious question arises from this definition: does algori#hsample uniformly
the set of all graphs of given size and arity in which all links are used? Perhaps
surprisingly, it does not; a proof by example is given below,

wWIN

THEOREM (Non-uniformity of Algorithm&()

Algorithm 2( does not sample uniformly the set of all fully-linked graphs of given
node-number and arity.

Proof: Consider the set of graphs with two nodes each of arity four. There are only
three topologically-distinct fully-linked graphs in this set, the three shown at the
bottom of figure 3. If the algorithm sampled these uniformly it would generate each
with probability one-third. The branching tree in figure 3 represents the possible
ways in which the algorithm can proceed. The numbers associated with the branches
on the tree give the probabilities of moving from the partially-constructed graph at
the vertex above to the graph at the vertex below. Only topologically-distinctgraphs =

In the case of graphs of odd node-number and odd arity, one link is left unconnected.
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are shown. It can be seen from this illustration that the three graphs are generated
with probabilities8 /35, 24/35 and3/35, rather therl /3 each. Thus the algorithm
does not sample the space uniformly.

Q.E.D.

It is clear from this that, perhaps counter-intuitively, a distinction must be made

between “choosing a graph at random from a space of graphs” and “builditfgndnternode Distance

‘random graph’ by connecting up the links in an arbitrary order”. Graphs generated 16 -
by algorithm2( are easier to produce than graphs selected at random from the set, and
perhaps correspond more closely to the way a “random graph” might be constructed

in practice. For these reasons the figures given below for random graphs are obtained
by sampling a number of graphs generated by algorithm

12

8 Regular and Random Graphs. A Comparison

10 |

A comparison between the mean inter-node distances for tori and random graphs at
various numbers of processors with fixed arity 4 is shown in figure 4. Toeind is 8
also shown for reference. Error bars are notincluded in the case of the random graphs
because they are considerably smaller than the marks used to display the points. Itis
immediately apparent that as the number of processors increases the mean internode -
distance rises very much faster for a torus than for a “random graph”. Moreover,

the random graphs do not diverge to any significant degree fromthoeind, but

maintain mean inter-node distances which exceed the theoretical bound only by a
small, roughly constant amount. This immediately suggests that regular lattices are
not ideal topologies for any application whose performance might reasonably be >
expected to be governed by the the mean inter-node distance.

0

O Torus

¢ Random Graphs
Theoretical Bound

It is possible to understand the way in which the regularity of grid-like graphs
increases significantly the distances that messages have to travel. The characteristic
pattern of connections on Moore graph ensures that there is a unique shortest path
between every pair of nodes. On regular lattices the pattern is almost the reverse:
there is a multiplicity of routes between almost every source-destination pair, each
equally short. This militates against compactness, for on a compact graph these
different routes would lead to different nodes.

i
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9 DeBrujn Graphs

The regular graphs so far discussed are highly non-compact, but are not the only
kinds of regular graphs which can be considered. de Brujn (1946) discovered a class
of graphs repreatedly discovered since 1894, which are known under various names
including de Brujn’s and “shuffle networks”. They can be defined only for nodes
of even aritya = 2b, and for networks wittb* nodesj<Z*. The simplest way of
describing them involves labelling each node with a number in the ratae* — 1,
expressed in bade The de Brujn graph is then constructed by connecting to node

« all those nodes whose labels can be obtained by shiftibg one place (left or

right) and filling the “spare” digit created with any bakeligit. The example in
figure 5 uses arity, giving binary coding, and takés= 3 for 23 = 8 nodes. The

links are shown in the table below:

node linked to

000 000 100 000 001
001 000 100 010 011
010 001 101 100 101
011 001 101 110 111
100 010 110 000 o001
101 010 110 010 011
110 011 1112 100 101
111 011 1112 110 111

The regularity of de Brujn graphsis a different kind of regularity from that previously
described, but does not permit a simple rule-based routing strategy to be devised.
It can be seen from figure 6 that while de Brujn graphs are more compact than the
regular lattices examined, they are very much less compact than random graphs.

10 Optimising Graphs

Before examining other measures, it will be appropriate to introduce optimisation
schemes which might allow the construction of graphs with even better properties
than the “random” graphs. Three techniques will be examined—a “greedy” algo-
rithm, a technique for generating 2-opt graphs (see below) and a genetic algorithm.
In all cases the objective functions for the optimisation will reward compactness

10
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Figure5: A de Brujn Graph
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alone, and will in fact be the mean inter-node distancehe most-loaded link- and
node-loads will then be calculated, and will be found to be acceptably low. The
three techniques are described in turn.

10-1 ‘Greedy’ Graphs

“Greedy” optimisation techniques are usually described as “taking the best they can
at each step and never back-tracking”, after the “greedy algorithm” for tackling the
TSP (Lawleret al (1985)). Thus, in constructing a graphusing a greedy algorithm

the aim will be (loosely) to add at each step the link which maximally redu(dés.
The greedy algorithm can be implemented in the following way:

The Greedy Algorithm
Phase |: (Produce a connected graph)
1° Begin with a graph having all the nodes present but no links.
2° Select any node and labelit
3° While there are still nodes which are not connected, repeatedly select
any one of these, connect it and reassign the labelto the new
node just connected.
Phase |I: (attempt to compact the graph)
4° Select any pair of nodes which have maximum separation on the
graph under construction, and which both have at least one spare
link, and make a connection between these nodes.
5° Repeat step 4 until all links have been allocated.
It should be clear that this algorithm reduces the diameter of the graph under con-

struction,.(K), by the maximum possible amount at each step, but that this in no
way guarantees the construction of graphs with optimal valueg f).
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10-2 k-opt Graphs

A graph is said to bé&-opt with respect to some objective function if there is no
permutation of links which improves the performance of the graph with respect to
this function (Lin (1965)). In particular, a graph is 2-opt if there is no transposition
of links which improves its performance. Various algorithms exist for producing
2-opt graphs. The simplest involves starting from an arbitrary graph and repeatedly
testing transpositions, accepting any which improve the performance of the graph
until the graph becomes 2-opt. The testing order is unimportant in the sense that
as long as every node is tried, the algorithm will be guaranteed to generate 2-opt
graphs. Different testing schedules may, however, produce graphs of different char-
acteristic goodness. The implementation used for this work enumerated all possible
transpositions and evaluated them in order. Givéinks there arey(n — 1)/2 pos-

sible transpositions so the algorithm is complete when there havenlfeen 1) /2
unsuccessful attempts at transposition.

10-3 Genetic Algorithm

The use of a genetic algorithm was by far the most ambitious optimisation scheme
attempted in this work. An implementation of a genetic algorithm for topology op-
timisation already existed in Edinburgh, written by Norman (1988b). This program
was used in this study, with limited success, and it was in part experiences with
this genetic algorithm that inspired the investigation of representation problems in
genetic algorithms detailed in chapter 3.

the community of workers on genetic algorithms. In addition to
providing a particularly convenient way of implementing genetic al-
gorithms omviMD machines, this allows different populations to ex-
plore different parts of the search-space independently of each other.
As is observed in living systems, when populations are isolated from
each other they generally develop differently, and this encourages a
more thorough search of the space. The aim is not, however, sim-
ply to implementn small runs of the same problem andifferent
processors of the machine, but rather to have the different processors
cooperating on one large optimisation. For this reason a solution
(chromosome) from one processor occasionally “migrates” to a new
processor where it displaces a member of its sub-population. This
ensures that the information gained during isolated development on
the various nodes is eventually shared across the network.

ranking of solutions. Instead of reproducing in strict proportion to
fitness, a ranking of solutions on the basis of fithess is used. The
probability of reproduction for a chromosoman a population of
sizen is then taken to be

Pl =Y po
=0

whereR(n) is the rank ofy andp, is the so-called “stepping proba-
bility”. (The idea is to step through the list, selecting each element
with probabilityp,.)

A number of features distinguished the genetic algorithm in question from the ;45 stated earlier that finding a suitable respresentation for the problem to be stud-
standard algorithms described in chapter 3. The more significant differences were: o using a genetic algorithm was the key determinant in its success. Equivalently,

e employment of non-standard genetic operators. In particular, the
crossover operator exchangaahol ogous subgraphs between par-
ents. Details of this and the other operators can be found in Norman
(1988b).

e division of the population into isolated sub-populations. Each sub-
population occupied on a separate processor ondke This was an
early implementation of an idea now gaining much currency within

the task can be seen as one of finding suitable genetic operators, for it is the inter-
action between the operators and the chromosomes which determine the meaning
of “schemata”, which in turn determine the effectiveness of the algorithn©Of
course, if non-standard operators are in use it may well be that schemata also have
to be redefined. Using a genetic algorithm for topology optimisation raises all of
these difficulties in fairly acute form.

31 more carefully, this interaction controls the way in which the genetic algorithm explores the space, and

thus determines which set(s) of equivalence relations are most useful in analysing the dynamics of the
system.
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In order to embark on a serious discussion of the application of genetic algorithms
to this problem, it would be necessary first to discuss in some detail the Quadratic
Assignment Problemqap), of which theTsp is an instance, for this is in many
ways a simpler form of the transputer configuration problem. This in itself would
require many pages and this discussion is therefore reserved for another forum.

Diameter Measurements

11 Results 10

Some results for mean-internode distance have already been presented. In this |
section further results are collated which begin to justify the claim that regular
graphs are a less than ideal choice for many applications. Unless otherwise stated,
results are for arity 4.

111 Mean Internode Distance and Diameter

The graphs in figure 6 and figure 7 give an indication of the performance of the .
various optimisation schemes considered when using mean internode distance as |
the objective function. It can be seen that while de Brujn graphs diverge very
much more slowly from the/“bound” than the regular lattices, they still have
mean internode distances very much greater than graphs constructed randomly by
algorithma!. 3

4

When using diameter to assess the quality of solutions, tori can be seen from figure & -
to perform even less well. The figures for “greedy” graphs are averages over twenty

runs, and the comparison shown uses thelfound” derived above and the exact 1 | o
results for a tori.
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11-2 Binary Hypercubes

It is often claimed that binary hypercubes are unusually compact, but the results
shown in figure 9 for diameter and figure 10 for mean internode distance show that
this is misleading: large binary hypercubes have high arity, and the graphs show that
if the many links emanating from each node are connected at random (following
algorithm2() very much more compact graphs can be constructed.
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11-3 Link Loading

The graphs in figure 11 show the link loads in “greedy” graphs, and compares
these to the loads on square tori with the same numbers of arity-4 nodes. The
communications pattern assumed is that each processor communicates once per
cycle with every processor in the system. Thus gi¥émprocessors there arfg 2
communications per unit time step. Theaxis shows the number of links in the
system which suffer the load shown on th@xis—the number of messages which
pass through a link under the random routing strat8gyThree different system

sizes are shown (36, 64 and 100 nodes) and it can be seen that while the loads in the
“greedy” graphs are non-uniform, even for the smallest graph no link suffers a load
greater than that whickvery link carries on the torus. Moreover, link loads degrade
very much more slowly for the “greedy” graphs as the number of nodes rises: for

a 100-node graph even the most heavily-loaded link carries around 25% less traffic
than each link in the corresponding torus.

11-4 Node L oading

The results for node loading under similar conditions are shown in figure 12, and
follow a very similar pattern. Even for 36 processors the highest node load on the
random graphs is noticeably smaller than the load on the corresponding torus.

11.5 Narrowness

An obvious question to ask about the irregular graphs discussed here is whether there
is not some group of nodes which has a very poor communications-to-calculations
ratio, and is thus “narrow” in the sense defined in section 4. A result was derived
earlier which showed that narrowness can be bounded in terms of the most-loaded
link-load. The table below shows a comparison between the actual narrowness of
a torus for various number of nodes, and Hoeind on narrowness for the graphs
produced by the “greedy” algorithm, and confirms that narrowness is not a problem
with these graphs. As usual, arity 4 is used for comparison
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Link Loads for 36 processors Link Loads for 64 processors Node Loads for 36 processors Node Loads for 64 processors

Percentage of Links Percentage of Links Percentage of Nodes Percentage of Nodes
100 Torus 100 100 Torus 100
90 EY 90 EY
80 80 80 80
70 70 70 70
60 60 60 60
50 50 50 50
40 40 40 40
30 30 30 30
20 20 20 20
10 10 10 10
0 0 | 0 0
16 32 48 64 80 96 LiéizLoaézg 0 16 32 48 64 80 96 LinlﬁzLOahzs 50 100 150 200 250 300 350 ANOgdésfoa?joo 0 50 100 150 200 250 300 350 4N0%dgsl?oa%00
Link Loads for 100 processors Node Loads for 100 processors
Percentage of Links Percentage of Nodes
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Figure 11: Link Loads Figure 12: Node L oads
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Nodes Torus Greedy

36 1.50 1.45
64 2.00 1.81
200 2.50 2.04

It might be expected that the actual narrowness of the “greedy” graphs (which is
hard to calculate) would be rather even lower than these bounds.

12 Applications

12-1 Speed Increasein a Real Application Appendlx

An existing application (Norman (1988a)) which used a topology-independent
message-passing system (Norman (1988c)) was taken and loaded onto a 2-opt hamil-
tonian graph with respect to mean interprocessor distance. The program had been
designed to run on a helical torus, but despite this achieved an immediate speed
increase of around 10% on the most computer-intensive part of the calculation in
the program. (The overall speed-up was greater.)

This is an extraordinary result, for the network used consisted of only 64 processors,

and the mean internode distance for the 2-opt graph was only some 30% less than
for the helical torus. Moreover, the same object code was used in each case: a
topology independent harness allows speed improvements such as this to be gained

immediately upon finding a better graph. General and Set-Theoretic Notation 79
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Whereof one cannot speak,
thereon one must remain silent.
— LUDWIG WITTGENSTEIN.
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1 General and Set-Theoretic Notation

f:A—B
{F(k) | g(k)}
| 4]

(S
ACB
ADB
AUB

.
<wze [l ||>&><23§
&

a mapping with domail and co-domairB
‘the set of f (k) for which g(k)’

the number of elements in a sét

‘is an element of’

‘A is a subset o3’ (not necessarily proper!)
‘A is a superset a3’ (not necessarily proper!)
‘the union of A and B’

‘the union of all setB C A

‘the intersection ofd and B’

‘the intersection of all set® C A

‘or’ (disjunction)

‘and’ (conjunction)

the empty sef }

‘is defined to be equal to’

‘implies’

‘is identically equal to’ (for all values)
‘maps to’

‘is equivalent to’ (‘twiddles’)

‘there exists’ (the existential quantifier)
‘for all’ (the universal quantifier)

‘it is the case that’ or ‘maps’
‘top-heavy’ sign function

the set of permutations af objects

the ‘power set’ (set of all subsets) df
the set of real numbers

the set of positive real numbers

Ry = RT U {0}

the integers

the positive integer§ 1,2, ...}

Z§ =zt u {0}

the probability of event X

the restriction off to (domain)S

79

2 Neural Networks

the back-propagation learning algorithm
the connection mask for a network

1if nodes is connected to nodg
decomposition of the set of nodes

the jth external node in a network

the set of external nodds = I U O

the global error (oveall patterns)

the set of nodesfor whichc;; =1

the jth hidden node in a network

step size for a bias in gradient descent
step size for a weight in gradient descent
the set of hidden nodes in a network
the set of input nodes in a network
thejth input node

the set of nodes in a network

a neural network (as a function)

the set of output nodes in a network
the jth output node

an input pattern for a network

a target output pattern for a network

a training set (of pattern-target pairs)
the set of activation functions

the activation function for node

the set of weights in a network

the weight from nodé to nodej

an index set for the hidden nodes
(fractional) momentum term in back-propagation
the network error for one pattern

a permutation of hidden node labels
the potential at thgth node

the bias for nodg

the space of all neural networks



3 Genetic Algorithms

=
N~ Qe mgs =@ XOom
~ 2%

S ~
SR D

SPpPSeE o

a gene with specified value

a gene with any value

‘is compatible with’

an equivalence relation

the similarity set of) and¢

a set of control parameters for an operator

a member of a control set

the population at timestep

the set of all chromosomes (in some domain)
the genotype— phenotype decoding function
set of alleles for théth gene

g =G u{o}

the inversion operator

an interval inR

the definition length of a schenga
random-relinking operator

the general mutation operator

the number of instances of a schema or fograttimet
the number of genetic operators

theith genetic operator

the order of a schema

probability of crossover (each reproduction)
probability of inversion (each reproduction)
point mutation rate

“stepping” probability for rank-based selection
a type of reproductive plan

the set of optima i

the rank of a chromosome in a population
random, respectful recombination

a structure irS

the search space of all structures

utility function for chromosomes

a crossover operator

theith detector

the diversity of a population

a chromosome

€ Re B3>

4 Graphs

K]

Q

theith gene on chromosomge

a chromosome

utility of schema or formg

mean utility of instances df in population at time
mean utility of population at timestep

a schema or forma (equivalence class)

the set of formae or schemata

the linkage information for a chromosome

the representation (or coding) function

the similarity of two chromosomes

the set of equivalence relations inducing formae
the view of an optimum

the view of the set of optima

an optimum ing

number of nodes in a grapk-(| K *|)

the arity (number of links to) a node
Algorithm for constructing ‘random graphs’
the diameter of a graph

a graph

set of nodes in grapR’

the set of graphs of arity up toand having sizex
the set of graphs of arbitrary arity and size
number of external links in a gragkl

the random routing strategy
graph-theoretic distance between nodasd;
a subgraph

the set of all subgraphs of a grajgh
subgraphss of a graphk with | S| < 1|K]|
the mean inter-node distance for a graph
the most-loaded node load

most-loaded link load

the narrowness of a graph



5 Equivalance Relations

DEFINITION (equivalence relation)
An a relation~ over a setA is said to beequivalence relation if it satisfies the
following three conditions:

Reflexivity: Va€A, a~ a.
Symmetry: Va,beA, a~b=b~a.
Transitivity: Va,b,c€eA, a~bAb~c=—a~c.

EXAMPLE (equivalence relation)

The = relation (equality) is an equivalance relation over the set of real nunitbers

Proof
Reflexivity: Va€R, a = a.
Symmetry: Va,beR, a=b=b=a.

Transitivity: Va,b,ceR, a=bAb=c=a=c.

Q.E.D.

6 Logical Conventions

guantification preceding the colon and the predicate following it. The only extra
complication arises with qualifiers to the quantification, which are put in brackets.
For example,

VneZt (n#1)3In'eZt: n=n'+1

asserts that every positive integer with the exception of 1 is the successor to some
other positive integer. The exception need not be rare, so that it would also be quite
acceptable to say

VneZt (neven) An'€Zt : n =20/,

though this is tautological to an absurd extent.

Because conventions vary in logic, those adopted here will be described briefly. The

general form of a quantified expression is

Qi) + S(zy)

whereQ(z;) quantifies some variables andS(z;) is a predicate which is true
under the conditions specified Bz ;). For example,

VneZ An'€eZ: n' =n+1

reads ‘for every integen there exists an integet’ for which it is the case that
n' = n + 1". All of the logical statements in this work have this general form, the
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