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Abstract

Forma analysis is applied to the task of op-
timising the connectivity of a feed-forward
neural network with a single layer of hidden
units. This problem is reformulated as a mul-
tiset optimisation problem and techniques are
developed to allow principled genetic search
over fixed- and variable-size sets and multi-
sets. These techniques require a further gen-
eralisation of the notion of gene, which is pre-
sented. The result is a non-redundant repre-
sentation of the neural network topology op-
timisation problem together with recombina-
tion operators which have carefully designed
and well-understood properties. The tech-
nigues developed have relevance to the ap-
plication of genetic algorithms to constrained
optimisation problems.

1 Introduction

While genetic algorithms have been applied to a num-
ber of problems in neural networks, there are severe
difficulties with this endeavour. This is significant
for two reasons. First, many of the problems in neu-
ral networks are important in their own right and do
not presently have any wholly satisfactory means of
resolution. A good example of this is the choice of
network topology. Secondly, the failure modes of the
genetic algorithm seen in neural network applications
are common to a broader class of problems, and their
study can yield more general insights.

This paper is a study in the application of forma anal-
ysis (Radcliffe [22, 23]) to thisand related problems. It
begins in section 2 with a brief review and a discussion
of the difficulties with previous genetic approaches to
problems in neural networks. This is followed, in sec-
tion 3, by a short review of schema- and forma anal-
ysis and a discussion of the “permutation problem”
for neural networks. (Although the paper is intended
to be self-contained, the reader may find it easier to

follow after reading Radcliffe [23].)

The core of the paper, sections 4, 5and 6 is a study
of the application of forma analysis to optimisation
problems for which the solution is a set or multiset.
Both fixed- and variable-size sets and multisets are
considered. Section 4 reviews naive approaches to
these problems, section 5 uses forma analysis to gain
further insights and to develop a more satisfactory for-
mulation of the problem, and section 6 is a study of the
general phenomenon of “non-separability” of formae.
The reason for studying these problems is that in sec-
tion 7 neural network topology optimisation problems
are reformulated as multiset optimisation problems,
and the theory developed in the preceding sections
becomes directly applicable. This section includes a
discussion of sub-parameter-level recombination with
particular reference to hidden nodes.

The paper closes with a summary and discussion of
the results presented, and draws out some of the wider
implications for genetic search in other domains.

2 Genetic Approaches to Neural
Networks

Genetic algorithms are increasingly being applied to
problems in neural networks. Rudnick [24] and Weiss
[34] have produced excellent bibliographies for this
field in 1990. A number of approaches can be distin-
guished, all of which have had limited success, and
most of which have concentrated on Rumelhart-type
feed-forward networks. The two primary areas of ac-
tivity have been:

1. Topology Optimisation.
The genetic algorithm is used to select a topol-
ogy (pattern of connectivity) for the network
which is then trained using some fixed train-
ing scheme, most commonly back-propagation
of errors (Rumelhart [25]). This approach is
inherently computationally demanding because



the complete conventional training phase (itself
computationally intensive) is required simply to
evaluate the fitness of a chromosome (network
topology). The approach remains reasonably at-
tractive despite this because of the paucity of
principled alternative methods for selecting the
network topology. Representative studies in this
class include those of Miller, Todd & Hegde [15],
Harp, Samad & Guha [11, 10], Whitley, Stark-
weather & Bogart [39], Muhlenbein [18] and Han-
cock [9]. This class of problems is addressed in
section 7 of the paper.

2. Genetic Training Algorithms.

Selecting weights for a neural network is itself an
optimisation problem,! and a genetic algorithm
can naively be applied to it, using an inverse er-
ror as the measure of utility (fitness). Whitley
and his co-workers [35, 39, 38] have done much
work in this area, and the study by Montana and
Davis [16] is especially ingenious and notewor-
thy.

Hybrid approaches have also been discussed (Rad-
cliffe [21]), and there have been studies in which ge-
netic algorithms have been used to tune the parame-
ters of other training schemes, including initial weight
configurations (Belew, Mclnerny & Shraudolph [1]).

All of these approaches have associated problems,
which have been discussed by Montana & Davis [16],
Radcliffe [20, 21], Belew et al. [1] and Whitley et al. [37].
Principal among these, and appearing in many differ-
ent guises, is a permutational redundancy associated
with the arbitrariness of labels of topologically equiv-
alent hidden nodes. Specifically, to take an extreme
case, in a fully-connected feed-forward, layered net-
work with a single hidden layer comprising N, units,
(figure 1) there is approximately an N,! potential re-
dundancy associated with the indistinguishability of
networks with relabelled hidden units.

If the genetic representation (whether it be topologies
or weights that form the search space) distinguishes
between networks which differ only by the labelling
of hidden units, the search space is enormously en-
larged. While optima usually become more numer-
ous by a comparable factor, the global nature of ge-
netic search tends to make navigation through the
enlarged search space very difficult (Radcliffe [20, 21],
Belew et al. [1], Whitley et al. [37] and section 3.2).
Genetic algorithms are sensitive to the potential for
redundant representations in a way that most other
search schemes (for example, gradient techniques and

1 albeit one which often has a rather poorly-defined objective function

Figure 1. A fully-connected 5-3-4 layered neu-
ral network. Notice that the hidden node labels
hi, ha, hg are arbitrary (providing that the hid-
den nodes are identical) giving, in this case, a 3!
redundancy in labelling.

stochastic processes like simulated annealing) are not.
There are two (related) reasons for this:

1. local techniques tend to make ‘smaller’ moves in
the search space than those possible under genetic
recombination (“crossover”);

2. most techniques maintain only a single solution
rather than a population of solutions.

The relationship between these two points should be
clear: the danger is exemplified by the case where two
equivalent networks (identical up to a re-labelling of
hidden units) can be recombined to produce a child
whichis notequivalenttothem. Thisisaphenomenon
which is not seen in “conventional” genetic search
(for example, simple parameter optimisation) and it
has been strongly argued elsewhere the problem is
highly detrimental to the effectiveness of the search
process both in the specific context of neural networks
(Radcliffe [20, 21], Belew et al. [1]) and more generally
(Radcliffe [22, 23]).

3 Schema and Forma Analysis

3.1 Formulation and Principles

In order to understand the motivations for the ideas
put forward in this paper it is necessary briefly to
review some of the theory of genetic algorithms.

Holland’s ground-breaking formulation and analy-
sis of genetic algorithms introduced the theoretical



framework of schema analysis, and the well-known
(if often poorly-expressed) Schema Theorem (Holland
[12]). This formulation applies primarily to k-ary?
string chromosomal representations for which each
locus (site) on the chromosome has a well-defined
meaning.”

In 1985 Goldberg & Lingle [8] extended Holland’s
work to cover permutation-based problems (such
as the well-known Travelling Sales-rep Problem)
through the introduction of o-schemata (see also Gold-
berg [5]). More recently, Vose & Leipins [32, 33] and
Radcliffe [22, 23] have independently further gener-
alised Holland’s results to take in very much more
general objects which Vose calls predicates and Rad-
cliffe terms formae. This paper uses and builds upon
Radcliffe’s formulation.

A schema may be viewed as a set of chromosomes
which share some specified subset of their genes. Hol-
land introduced a “don’t care” symbol I to aid the
description of schemata, so that the schema 1000 is
the set of all chromosomes which have a one at their
firstlocus and a zero at their third locus. A forma, sim-
ilarly, may be viewed as a set of chromosomes which
are related by some (any) specific characteristic: this
need not be the sharing of gene values.” It is conve-
nient to regard both schemata and formae as equiva-
lence classes of solutions under given (often implicit)
equivalence relations over the representation space C
(the set of chromosomes).

One of the central tenets of forma analysis is that for-
mae should be chosen which group together chromo-
somes coding solutions which might plausibly have
similar performance. Having chosen such formae, ge-
netic operators are constructed with a view to manip-
ulating solutions® in meaningful ways. Specifically,
the aim is to build recombination operators which
respect forma membership and properly assort formae
(Radcliffe [22, 23]). These terms are explained and
illustrated in figures 2 and 3 respectively, and are de-
fined more rigorously in section 6.1.

3.2 Application to Neural Networks

In addition to increasing the size of the search space,
the permutation problem described in section 2 makes

2 basek, e.g. k = 2 gives binary, £ = 8 octal etc.

Of course, the theorem applies to any string-based representation given
suitable coefficients quantifying the disruptive effects of the genetic op-
erators, but the observed schema averages on which the theorem crucially
depends will have usefully low variance only—loosely—when the loci
have well-defined meanings. This is discussed in detail in Radcliffe [21].
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At least, not as genes are conventionally understood.
strictly, their chromosomal representatives

nod¢

Figure 2: A recombination operator is said to re-
spect a set of formae if given any pair of chromo-
somes n and ¢, all of their children under recom-
bination are members of all the formae to which
both parents belong. The similarity set of » and ¢,
written n ¢ ¢, is the smallest forma which con-
tains them both. This can be constructed as the
intersection of all formae containing them both
parents, illustrated above. Respect amounts to
the requirement that each child produced by re-
combination lies in the similarity set of its par-
ents.

Figure 3: A key function of recombination is that
it mixes features from parents so that children
may exhibit traits inherited from each. Given
two parents, » and 5’ which belong to formae &
and ¢’ respectively, it may be possible to generate
children which are members of both ¢ and ¢’ (i.e.
children which exhibit both the traits captured
by the two formae). A recombination operator
which will, with non-zero probability, produce a
child in the intersection of arbitrary formae ¢ and
& (given parentsp € £¢and 5’ € ¢/, and assuming
thaténé’ # @) issaid properly to assort the formae
under consideration. It should be noted that
the requirements of respect (figure 2) and proper
assortment are not always compatible, though
for many sets of formae (including schemata)
they are.




respect and proper assortment rather hard to ensure.
These differing aspects of the permutation problem
will be referred to as the numerical permutation problem
and the navigational permutation problem respectively,
and will now be considered in turn.

Throughout the paper a distinction will be made be-
tween a “true” search space, S, consisting of the actual
structures under consideration (in the present case
network topologies) and a representation space (or
space of chromosomes) C. Assume that networks with
N; input nodes, N, output nodes and up to Ny hid-
den nodes are considered. Then the number of hidden
node types is 2"Vi*" because the connection to each
external node may be present or absent.

The number of network topologies (the size of S) is
given by

2N,+N0 Ny,
: Nh!) (1)
(The approximation in this expression is that all the
hidden nodes have different connectivities, justifying
the N3!in the denominator. This approximation is
good when the number of hidden node types vastly
exceeds the maximum number of hidden units, which
is almost always the case.)

8]~

For example, if there are ten input nodes, ten output
nodes and a maximum of ten hidden nodes

(2291 1.6 x 10°° 53
~ ~ 4 x 10°°. 2
10! 3 % 10° x 10 (2)

The (naive) representation space C consists of chro-
mosomes which use one bit to mark the presence or
absence of a connection between each external node
and each labelled hidden node. The size of C is given
by the numerator alone,

8]~

IC] = (2°9)"" ~ 1.6 x 10°° (3)

While redundancy which expands the size of the
search space by afactor of more than a million for even
a problem of modest size may at first seem daunting,
the reader may be tempted to reflect that the differ-
ence between overall sizes 10°° and 10°* seems rather
less significant. This feeling may be reinforced by ob-
serving that as the size of the network increases, the
rate of growth of the size of the search space (char-
acterised by the numerator, 2(V:+V)Nr ) outstrips the
rate of growth of the permutation problem (for likely
values of node numbers N;, N,, and N3) which grows
only as N!. Thus, for example, increasing the size of
the problem from a 10-10-10 network to an 11-11-11
network increases the size of § from 10°* to 10%°.

Complacency, however, would be misplaced. For
suppose that some formae were constructed in the

i5.
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Figure 4. A hidden node &, which can be de-
scribed by the set of external nodes to which
it is connected, { i1, i3, %4, 01, 03 }. This can also,
of course, be conveniently described by the bi-
nary string 101101010 where aone indicates athe
presence of a connection and a zero the absence,
and where the nodes are laid out in order with
the input nodes preceding the output nodes.

true search space S but that the representation used
were redundant in the way described (i.e. larger by
a factor of around Np!). Ensuring respect and assort-
ment of these formae would be essentially impossible.

To see this, imagine that there are two beneficial sets
of hidden nodes, where a hidden node is considered
complete with its set of external connections (figure 4).
Assume that one chromosome 5 represents a network
which contains the first “good” set of hidden units,
and that another chromosome ¢ codes another net-
work containing the second beneficial set of units.
Thinking of these sets of units as “building blocks”,
the aim would be to bring the two together in a sin-
gle chromosome by recombination. If, however, the
hidden unit labels of the first beneficial set of nodes
on 5 overlap with the labels of the second set on ¢,
recombination will be unable to bring these two sets
together, no matter how often it is applied ® (figure 5).

At one level, this can be viewed simply as an example
of the numerical permutation problem, for “all” that
the genetic algorithm needs to do is to construct a
similar chromosome ¢’ which is like ¢ but has node
labels for the second “good” set of hidden units which
do not overlap with those of the first set on »; in prac-
tice, the difficulty is worse.

A good way to see this is to consider an increasingly
common way of implementing genetic algorithms,
in which an isolated sub-population model is used in
contrast to the traditional panmictic population. The
isolated sub-population model consists of a number

6 Thatis, the problem is not merely on of proper assortment, for the formae
cannot be weakly assorted either (Radcliffe [23]).
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Figure 5: The hidden layers from two networks,
N1 and N5, the first of which can be trained to
recognise the first half of a training set reliably,
and the second of which can reliably be trained
to classify the second half. If the label of the
hidden node k3 on the second network were
changed to - recombination would be possible
without disturbing either subnetwork, whereas
this is impossible with the fixed but arbitrary
hidden node labels shown.

of genetic algorithms each tackling the same search
problem with separate populations. There is usually
occasional migration of solutions between subpopu-
lations. This approach is important both because of
its convenience for parallel implementations and be-
cause the maintenance of isolated sub-populations is
helpful in delaying loss of genetic diversity, encour-
aging “speciation” and reducing the number of eval-
uations required to find an acceptable solution (Nor-
man [19], MUhlenbein [17] etc.)

Consider the relatively likely situation in which 7 is
drawn from a population on one processor which has
largely converged on network topologies which in-
clude the first beneficial set of hidden units, and ¢ is
drawn from a different population in which the sec-
ond group of units is common. The clash of node la-
bellings will ensure that no matter how often chromo-
somes from the two populations are brought together,
they will be unable to be recombined to produce a so-
lution which contains both the beneficial sets of units.
This is the navigational permutation problem. This dif-
ficulty could, of course, arise in a similar way in the
panmictic population model if the population con-
tained two “species”, each possessing one of the two
beneficial sets of nodes, provided that the fithesses
of the two species were such that neither would be
quickly destroyed by the population dynamics.

The foregoing discussion should convince the reader
that the permutation problem is a serious impediment

to genetic search. It is not isolated to neural network
problems, though this is the present focus.” A major
aim of this paper is to suggest a possible representa-
tion for neural network topology optimisation which
avoids permutational redundancy and allows formae
defined in a way independent of hidden unit labels
(that is, formae which are well-defined in S, as well
as C) to be respected and properly assorted. This for-
mulation builds on the idea of regarding hidden units
complete with their external connections as basic en-
tities, and views a network topology as a collection of
such hidden nodes. This is the reason for the concen-
tration on set and multiset optimisation problems in
the following sections.

4 Sets, Multisets and Formae

4.1 Preliminaries

In order to approach the problem of optimising the
topology of a neural network with a genetic algo-
rithm, it is useful first to consider set and multiset
optimisation problems, which will form the solution
framework. Recall that the distinction between a set
and a multiset is that duplication of elements is not
significant in sets, so that

{a,a b} ={ab} (4)
whereas in multisets an element may appear more
than once

{a,a, b}t # {a, b}. (5)

(The notation {---]} is used to indicate a multiset.)
The difference is significant in this context.

A number of different set and multiset optimisation
problems may be distinguished. In general there
will be a “universal set”, £, from which elements are
drawn. The aim is to construct a set or multiset con-
sisting of elements drawn from this universal set so
as to optimise some property of the resulting set or
multiset. Examples could include

1. finding locations for bottle banks so as to max-
imise recycling in some area;

2. selecting members of a committee to make a en-
vironmental impact assessment;

3. choosing connections in a neural network to min-
imise its average learning time to some acceptable
error;

7 An even more pernicious form of the permutation problem is seen when
graphs are being optimised for some property, for in this case there is
generally a permutational redundancy of order »n! where n is the number
of nodes in the graph, and there is not normally an analogue of the fixed
“external” units.



4. choosing connections in a neural network to max-
imise its generalisation capability.

The first could be a set or multiset optimisation prob-
lem, according to whether multiple bottle banks were
to be allowed at a single location or not. Itis likely, for
practical purposes that the number of bottle banks
would be fixed (and that increasing this number
would increase the potential for recycling) so that the
size of the solution set would be known at the outset.

The second case is certainly a set rather than a mul-
tiset problem, since no human can appear more than
once on a committee, and though the size may be
known before-hand (perhaps because of budgetary
constraints) it could be that it formed part of the op-
timisation. (The more people on a committee, in gen-
eral, the longer decisions take to agree, and there are
people whom it may be desirable not to have present
or who could contribute nothing useful anyway.)

In the case of the two neural network problems, the
ideal number of connections may artificially be fixed
beforehand, but in general will not be known and will
itself be subject to optimisation. (It should be remem-
bered that while, in principle, the presence of a con-
nection should never be a problem since its strength
(weight) can always be set to zero, in practice a given
learning scheme may well be hindered by the presence
of a connection.) The trade-off is particularly acute in
the case where the goal is to maximise the generali-
sation capability of the network. In this case, too few
connections can prevent acceptable learning, while
too many will tend to hinder generalisation through
the phenomenon of over-learning.®

There may also be other complications, such as con-
straints on the sets, (there must be at least three bottle
banks in the Prime Minister’s constituency, the com-
mittee should not include arch-rivals etc.) but these
will not be considered in this paper. Thus four classes
of set optimisation problems will be considered—
fixed-size sets, variable-size sets, fixed-size multisets
and variable-size multisets.

4.2 Fixed-Size Multisets

In the case of a fixed-size multiset, the naive approach
is to use a k-ary representation, where k = |£|, the size
of the universal set, to allow each locus on a conven-
tional linear chromosome to take any allele from &,
and to proceed as normal with a conventional genetic

8 In fact there is evidence that for learning schemes like back-propagation it
may be desirable to train with a net of relatively high connectivity and then
to prune nodes with highly correlated firing patterns (Seitsma & Dow [28],
Burkitt [3]). This complication will not be considered in this paper.

operators. The problems with this are obvious and
profound.

1. There isahuge redundancy in the representation,
i.e. the representation space C is much larger than
the real search space S because of the different
orders in which the members of the multiset may
be written. While the number of optimais also, in
general, increased dramatically (though not nec-
essarily by the same factor”) navigation through
this larger search space may be very difficult.

2. More specifically, respect of “meaningful” formae

will be difficult to ensure. “Meaningful” for-
mae must group chromosomes only according
to properties of the solutions they encode: they
should not distinguish between two different rep-
resentations of a single solution. Thus, formae
for sets or multisets should correspond to well-
defined sets of solutions (sets or multisets) in S,
and not be defined only in the representation
space C.
To see that conventional (one-point) crossover
cannot respect any set of formae thus defined in
the context of multisets, simply note that a trivial
consequence of respect is that crossing a solution
with itself should result in the same solution; ap-
plying conventional crossover to chromosomes
ab and ba could result in aa or bb.

3. If £ is large, this representation has a high cardi-
nality, which is traditionally not favoured. This
aspect is discussed in section 7.1.

Whitley [36] has taken essentially this approach to
searching for a winning hand in a simplified form of
poker, but he additionally used an operator which
reversed the sequences of arbitrary portions of the
chromosome.'® This does not solve the fundamental
problems (1 and 2), though itdid enable him to find his
chosen global optimum very easily. This was an arti-
fact arising from the fact that the optimum happened
to be five aces, a pattern which is easy to produce
using this form of “inversion”. This is discussed in
detail in chapter 6 of Radcliffe [21].

4.3 Variable-Size Sets and Multisets

Variable-size sets and multisets can be dealt with in a
more traditional fashion with fewer problems. In this
case each locus on the chromosome can correspond

2 For example, optimising over a multiset of size n, if the solution be n copies
of asingle element, there is only one representation of the optimum, but n!
different representations of solutions in which every element is different.

10 It is important to note that this is not inversion in the traditional sense
introduced by Holland [12].



to an element of the universal set £ from which ele-
ments are to be drawn. The gene values (alleles) can
then indicate the number of copies of the element in
guestion to be included in the multiset. In this case, bi-
nary genes correspond to set optimisation, and higher
cardinality representations correspond to multisets.

This approach is both simple and traditional, and the
representation scheme described contains no redun-
dancy. It perhaps, however, requires the problem to be
viewed in a slightly unconventional way. Thus in the
four problems listed above, the positions on the chro-
mosome would represent different possible locations
for the bottle banks, the different possible people on
the committee, and the connections in the network. In
some cases this will lead to very long chromosomes,
though this is not necessarily problematical.

Roughly this approach to neural network topology
optimisation was taken by Miller, Todd & Hegde [15].
In this case, however, there is a further complication
already mentioned, which is the equivalence of dif-
ferent hidden nodes under re-labelling. Thus while
Miller et al. directly manipulated the binary connec-
tion matrices for the neural network, a connection
¢i; € {0,1} between nodes 7 and j contributes to re-
dundancy in the representation if either ¢ or j is a
hidden node. This problem will be reconsidered in
section 7.

4.4 Fixed-Size Sets

Fixed-size sets present more of a problem for tradi-
tional schemes. The (wholly inadequate) approach
described for dealing with fixed-size multisets could
be used if the recombination operator were altered to
ensure that multiple copies of elements were never
generated. This could be fairly easily achieved if the
chromosomes were sorted, though the resulting re-
combination operator would have to be carefully de-
signed to ensure that it was unbiased.

Similarly, the approach described for variable-sized
sets and multisets could be adopted for fixed-size sets,
but with the additional constraint that the sum of the
genes should be the number of elements in the set.
This could be ensured in a number of slightly unprin-
cipled ways, including random ‘helpful’ mutations
after crossover.

The approach described in the next section obviates
the need for such manipulation, and can be extended
to deal with the other classes of set and multiset opti-
misation problems discussed.
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5 Set and Multiset Recombination

5.1 Random Respectful Recombination

Radcliffe [23] introduced a class of random, respectful
recombination (R*) operators, which are defined with
respect to specific sets of formae and which are guar-
anteed both to respect and properly to assortthose for-
mae whenever these two conditions are compatible. !
The R? operator simply makes a uniform, random
choice over the members of the similarity set (figure 2)
of the two parents undergoing recombination.

It is easy to see that R® fulfills these claims. It plainly
respects the formae since respect amounts precisely to
the condition that all children be members of the sim-
ilarity set of their parents (figure 2). The requirement
that respect and proper assortment be compatible is
therefore precisely the requirement that the solutions
which proper assortment requires be capable of gen-
eration by the recombination operator lie in the simi-
larity set of the two parents. Thus any operator which
chooses every element from the similarity set with
some non-zero probability, and never generates any
other, must respect and properly assort the formae,
provided that this is possible.'?

In the light of this, the essential requirement is to
construct suitable formae for set and multiset opti-
misation problems. The four classes of set and mul-
tiset problems identified in section 4.1 will now be
discussed in turn, suitable formae for them will be
suggested and the R? operator and others will be con-
structed.

5.2 Fixed-Size Sets (Attempt I)

The most obvious definition of formae for set prob-
lems (whether fixed-size or otherwise) is that they
specify elements which the solution must contain.
This is very convenient, but requires rather careful
notation to avoid subtleties.

Let the universal set (from which all elements are
drawn) be £. Then, assuming that the set size is fixed
to be N, the search space S is a subset of the power
set™® P(€). Specifically,

S={nce|lm=n}. (6)

11 A set of formae which can be simultaneously respected and properly as-

sorted is said to be separable, and a recombination operator which achieves
this is said to separate the formae.

This is not the same as saying that every operator which separates a set of
formae must be capable of generating every solution in the similarity set of
the two parents; the condition is sufficient but not necessary.

13 The power set of a set A is the set of all subsets of A.



Figure 6: The universal set £ (top) contains, in
thisexample, three elements. The power setP(&)
of £ is the set of all subsets of £: each subset is
also drawn in the top figure. The search space S
is identical to the power set, and is illustrated in
the lower figure. The forma ¢ has the description
set (¢) = {a}, as shown. This forma consists of
all the sets in S which contain (¢}, as is shown in
the bottom figure.

A forma ¢ is then a subset of S, and the set = of all
formae is subject to

ZCP(S). (7)
More precisely, = will be defined by
E:{fCS|EI€§C€:(77€€<:>€5C77)}. (8)

This says that every forma ¢ has an associated descrip-
tion set & . This description set consists of the members
of £ which a solution must contain in order to be an
instance of the forma ¢. It will be convenient to use
the notation (&) for the description set £;. Figure 6
illustrates the general idea.

An example of a low precision'* forma ¢ with the
description set (&) = {a} is

¢={nes|nd{a}}. (9)

14 The precision of aformais similar to the order of aschema, and is defined in
Radcliffe [22, 23]. Essentially, high precision formae are small (contain few
members) and low precision formae are large (contain many members).
The precision of a schema is 2°, where o is the order of the schema.

Notice that the description set of the intersection of
two formae is the union of their description sets,

€ne)=(u). (10)

Recall that the similarity set of two solution sets is
the intersection of all formae which contain them. It
should be clear that this, the smallest forma containing
solution sets » and ¢, is the forma whose description
set is their intersection:

(ndQ)=nn¢. (11)

Recall also that, quite generally, the R? operator pro-
duces a child by randomly selecting a member from
the similarity set of the two parents. Thus, in this case,
given two parents 7 and ¢, R® chooses a random set
which contains their intersection. For example, if

E={a,b,edye f} (12)

and N = 3, the similarity setof {a, b,c} and {a, d, e} is
described by

{a,b,e} @ {a,d,e}) ={a,b,e}N{a,d, e} = {a} (13)
so that

{a,b,e} ®{a,d e} = {{a, b,e}t, {a,b,d}, {a,b, e},
{a,b, f},{a,c,d}, {a,c,e},
{a’ c’ f}’ {a’ d’ e}’ {a’ d’ f}’
{a,e,f}}.
(14)
Thus R® applied to {a,b, ¢} and {a, d, ¢} picks one of
these ten sets, each with probability one tenth.

This operator may seem a little odd, in that it can
produce a solution set containing an element which
neither of the parent sets contains: this is addressed
in section 5.4. Of more immediate concern is the ob-
servation that R® fails properly to assort the formae
as specified. To see this, simply observe that {a, b, ¢}
is a member of the forma described by (¢) = {b, ¢},
and {a,d, e} is a member of the forma described by
(¢'y = {d}, but that R® cannot produce a member
of the intersection of these formae ¢ N ¢’, because
€engy = {b,ed}, and R will always pick a mem-
ber of the similarity set given in equation 14. This is
not a failing of the operator, but rather reflects the fact
that the formae = are not separable, i.e. they cannot
simultaneously be respected and properly assorted.
The general problem of non-separable formae is dis-
cussed in section 6.

5.3 Variable-Size Sets

The non-separability of the formae encountered in the
consideration of fixed-size sets in the previous section



can be seen to be the direct result of the restriction to
fixed size. All of the definitions of the previous sec-
tion carry over to the case of variable-size sets with the
exception of the definition of the search space (equa-
tion 6), which is replaced by

S=P(&). (15)

This changes the similarity sets and consequently the
random, respectful recombination operator R*. Con-
sidering the “same” example as before, the description
set for {a, b, c} @ {a,d, e} is unchanged (equation 13),

({a,b,e} @ {a,d,e}) ={a,b,e}N{a,d, e} = {a}.
The similarity set itself is, however, quite different,
{abe}e{adel={nC&|aen}, (16)

where there is now no restriction on the size of . To
verify that proper assortment is satisfied if a random
member of this similarity set is selected, simply note
that the union of the two parents is always a member
of the similarity set and that the intersection of any
pair of formae containing the children contains this
union.

Thus variable-size sets are simpler than their fixed-
size counterparts and have separable formae, ensur-
ing that the R® operator both respects and properly
assorts them. In common with the fixed-size case,
however, children may be produced which contain el-
ements which belong to neither of the parents. This is
addressed next.

5.4 Gene Transmission and Basic Formae

In response to situations like the ones above, in which
R? succeeds in respecting formae, and (if they are sep-
arable) in properly assorting them, but generates so-
lutions which bear rather less relation to their parents
than might be deemed desirable, the concept of a com-
plete orthogonal basis and a formal concept of gene were
introduced in Radcliffe [23]. These ideas will now be
re-examined in the context of the examples above.

In their original conception, formae were introduced
as equivalence classesinduced by arbitrary equivalence
relations over the search space'® S (Radcliffe [22, 23]).
Thus, the idea was to try to choose equivalence rela-
tions which would group solutions into equivalence
classes which might reasonably be expected to con-
tain solutions with correlated (similar) performance.
In this way, the formae arose as secondary objects, in-
duced by equivalence relations. Itisimportantto note

5 n practice formae tend to be defined over the representation space C of
chromosomes: the distinction, though important, is not of great relevance
to this discussion.

that more than one equivalence relation is used at a
time in this analysis, which is slightly unusual and
constitutes a potential source of confusion.

Itshould be clear that regarding formae as equivalence
classes of equivalence relations is not a restriction on
their generality, since a forma representing an arbi-
trary subset £ of the search space S can be induced
by constructing an equivalence relation ~ according
to the rule

n~¢ <= (n,¢egorn(¢e). (17)

Traditional schemata over strings of length »n can be
viewed as equivalence classes of equivalence relations
described by members of

U= {0,m)" (18)

Here 1 is the traditional “don’t care” character intro-
duced by Holland [12], and M is a “care” character.'®
An equivalence relation from this set then relates
those chromosomes which agree (have a common al-
lele value) at every position in which the description
of the equivalence relation has the *“care” character
W positions in which the equivalence relation has
1 are not considered. Thus the equivalence relation
CJECIM, defined for a binary representation, has four
equivalence classes (formae), 10000, JOCI1, 1030
and J101, which are, of course, ordinary schemata.

Notice that the similarity set of two chromosomes de-
fined with respect to schemata is the schemawhich has
the “don’t care” symbol I at every position at which
the two chromosomes disagree, and their common
value at each remaining locus, so that, for example,

1010 6 1001 = 100100, (19)

It can be seen, therefore, that the R* operator defined
with respect to schemata, in the case of binary chro-
mosomes, reduces to precisely the familiar uniform
crossover operator'” (e.g. Syswerda [30]). In the case
of k-ary genes with & > 2, however, R> makes a ran-
dom choice over the whole allele set for genes at which
the two parents disagree: this may not be desirable.
The introduction of the notion of a complete orthogo-
nal basis for a set of equivalence relations allows this
possibility to be disbarred.

The concept of a basis is rather simple, and is moti-
vated by familiar definitions from the algebra of linear
spaces. The idea is that the equivalence relations with

16 similar notation can be used to describe Walsh partitions in the analysis of

deception. See Goldberg [6].

7 Strictly, uniform crossover is parameterised by the probability of drawing

each gene from the “first” parent: in this paper this probability is always
assumed to be 0.5 unless an explicit statement is made.
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Figure 7: The set of formae induced by the equiv-
alence relations ), ¥ and ¥ N «'. The formae
induced by v N+ are intersections of those in-
duced by v and /.

only asingle defining position (i.e. only one B symbol)
can be used to generate all the higher-order equiva-
lence relations. The definitions that follow will allow
the set

F={m000, OmOO, DOm0, OOOm ) (20)

to be interpreted as a basis for the equivalence rela-
tionswhich induce schemata (equation 18) with n = 4.

Intersection of equivalence relations will be defined
in a natural way (see figure 7) so that, for example:

EO0O0N OEO0 = mE00. (21)

The basic equivalence relations in £ can then be iden-
tified as genes, and the basic formae (equivalence
classes) as alleles. Having made these identifications,
it is possible to insist that in general, as in the fa-
miliar case, each of a child’s genes be inherited from
one or other parent. That is, the child should be in
the same basic forma as one of its parents for each of
the basic equivalence relations in E. This principle
is called strict transmission of genes (Radcliffe [23]). If
R? is modified to obey this principle, yielding the in-
heritance crossover operator, then uniform crossover is
recovered for k-ary string representations with k& > 2.
It is important to appreciate that the purpose of this
rather laborious construction of a simple operator is
that the construction is valid for any set of formae in-
duced by a set of equivalence relations for which a
complete orthogonal basis can be found.

A more rigorous formulation of complete orthogo-
nal basis than the foregoing is now presented, based
closely on Radcliffe [23].
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First, intersection is defined for equivalence relations.
For these purposes an equivalence relation ~ is con-
veniently described by a binary function

Y:CxC— 10,1} (22)

which returns 1 if its arguments are equivalent and 0
if they are not:
1, ifnp~¢

vim Q) = {0, otherwise.

The intersection of two equivalence relations v, v’ €
¥ can then be defined by

(N ), C) = { 1, i, ¢) = ¥ (n,¢) = 1,

0, otherwise.

Given this, asubset £ C ¥ will be said to constitute a
complete orthogonal basis for ¥ provided that

(23)

(24)

e (Completeness)
All relations ¢» € ¥ can be constructed as the
intersection of some subset of the basic relations:

V1/)E\I!EIE¢CE:HE¢:1/;. (25)

¢ (Orthogonality)
Every forma ¢ induced by every basic relation
¥ € E is compatible with every forma ¢’ induced
by every other basic relation ¢’ € E:

Vi, € E (¢ #4)
VEEWIVE Y] 6N £ @,

where [¢] is the set of equivalence classes (formae)
induced by .

(26)

The relationship between these definitions and their
counterparts in linear algebra should be clear. The no-
tion of completeness is essentially identical, and ex-
presses the fact that the basic equivalence relations
span the space of equivalence relations under con-
sideration, while orthogonality ensures that alleles
(membership of basic formae) can be freely mixed.
It will become apparent in later sections that the defi-
nition of orthogonality can be relaxed to some degree;
this will be necessary in order for a suitable basis to
be found for some classes of multiset formae.

5.5 Fixed-Size Sets (Attempt II)

Having defined genes in terms of a complete orthog-
onal basis for some equivalence relations the task is
now to find equivalence relations which induce the set
formae described in section 5.2 and to find a complete
orthogonal basis for them.

Recall that these formae were characterised by a set of
elements which a solution must contain in order to be



an instance of the forma in question. Thus, a simple
forma is described by

(€) = {a}. (27)
Clearly various equivalence relations could be con-
structed which have ¢ as one of their equivalence
classes. One such can be generated simply by using
the trivial rule expressed by equation 17 as follows:

_J1, if(faenndora U (),
Yiap(mC) = {0, otﬁmerw?se. Fae)
This equivalence relation induces two equivalence
classes, one comprising the solutions containing the
element ¢ and another comprising those which do
not. Thus, a second equivalence class, which had not
originally been specified, has also been induced by &.

(28)

There is clearly an equivalence relation vy, of the
form described by equation 28 for each « € £. More-
over, these are intuitively natural candidates for a ba-
sis for a set ¥ of equivalence relations which might
generate all the formae of the type described. As will
now be demonstrated, if the rule for intersection of
equivalence relations described by equation 24 is fol-
lowed, the set

does indeed form a complete orthogonal basis for a set

of equivalence relations ¥ which induce all the formae
in = as defined in equation 8, together with others.

To see this, consider the intersection of ¥ ;,; and vy,

which will be denoted +, ;3. According to the defi-

nition of intersection for equivalence relations (equa-

tion 24)

L ity (n,Q)
=vy(n,¢) = 1,

otherwise.

(Y{ay Ny )(0,¢) = (30)
0,

This equivalence relation induces four equivalence
classes, which might conveniently be written

tw = {necClaecnben},
¢ = {nec|aenbény, (31)
(= {neClagnben},
(5 = {neClagnbdn}

The generalisation of this is rather obvious. A gen-
eral equivalence relation, ¢ € ¥, has a description set,
conveniently written (), which is a subset of the uni-
versal set £. Members of the search space (themselves
subsets of &) are then equivalent under + precisely if
they contain the same subset of the members of the
description set (). Formally,

w,c):{L if (v) N = (¥) N ¢,

0, otherwise. (32)

It is clear that £ (defined in equation 29) does indeed
form a basis for the equivalence relations.'® A forma
¢ induced by an equivalence relation ¢y € ¥ is then
characterised by a partition of the description set (¢).
It then becomes convenient to describe a forma by a
2-tuple

€ =" (33)
where

N =¢ (34)
and

ruET = () (35)

with the interpretation

neEé = (nmg+:£+and7m£‘:¢). (36)

Having made these identifications, it is possible to
define the similarity set of two chromosomes with
respect to the formae = induced by ¥. This will allow
the random respectful recombination operator R® to
be constructed. Using the notation for the description
sets of formae just introduced, this gives

n®¢)=mn¢E—(nug)),

where the minus sign denotes set subtraction. The
R? operator makes a random (uniform) selection from
this similarity set. Returning to the example used
earlier, (equation 12, with N = 3),

({a,b,c} @ {a,d,e})
= ({a, b,e}N{a,d e}, & — ({a, b,e}U{a,d, e}))

= (ta1.41}).

(37)

(38)
This describes the forma containing those sets which
contain « and exclude f. With N = 3, this gives

{a,b,c} @ {a,d, e}
= {{a, b,e}, {a,b,d}, {a,b,e,},
{a,e,d}, {a,c e}, {a,d e, }}

Thus, R® for these formae can be understood as an
operator which

(39)

1. copies all the elements which are common to the
two parents into the child;

2. fills the remaining places in the child with a ran-
dom selection of the unused elements from the
two parents.

18 Technically, there is a problem given the definition of orthogonality, when
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equivalence relations with description sets of size greater than or equal
to the fixed size of solution sets are considered, but this is a very minor
consideration.



So a child @ of » and ¢ has the natural properties

nNCCOCpUC. (40)

It is clear, therefore, that in this case R? strictly trans-
mits genes where a gene corresponds to an element of
£ and an allele to the presence or absence of that ele-
ment (equation 28). Notice, however, that the counter-
example used at the end of section 5.2 remains valid,
so that that the formae are not separable, with the con-
sequence that R® cannot properly assort them. This
again arises directly from the restriction to fixed-size
sets.

An alternative way of viewing this operator is to imag-
ine a conventional linear chromosome in which every
position represents an element from the universal set,
and to imagine an operator like uniform crossover,
but constrained so that the total number of 1's on the
child is constant and equal to /V, the fixed size of the
set.

5.6 Fixed-Size Multisets

The extension of the previous case from sets to mul-
tisets is in essence simple, but involves one complica-
tion. The basic idea will be that rather than specify
whether or not an element is a member of the multiset
under consideration, a forma will specify the multi-
plicities of some elements. Formally, let P,,,(£) be the
multipower set of £, that is, the set of all multisets whose
elementsare drawn from £. Then the multiplicity func-
tion

m:EXPL(E) — 7T U {0} (41)

is defined so that m(x, n) is the number of copies of »
in the multiset 7.

A forma for multisets could either specify exact mul-
tiplicities for elements or could give bounds on their
multiplicities. Since the former is a special case of the
latter, where the bounds are maximally tight, the more
general case will be examined.

A forma is now conveniently described by a set of
3-tuples of the form (z, N}, N]) each of which is un-
derstood to specify that the multiplicity m(z, n) of the
element « in the set 7 lies in the inclusive range N to
N]}. For example, a forma ¢ with the description set

<€> = {(a’ 0, 0)’ (b’ L, 3)}

contains all those multisets over &£ of size N which
contain no copies of ¢ and contain between 1 and 3
copies of & (figure 8).

(42)

As usual, there are a number of sets of equivalence re-
lations which could be constructed to generate these

. L - - L
a b c d e f

Figure 8. A visualisation of the forma ¢ with
description set (¢) = {(a,0,0),(b,1,3)}. The
full ranges for elements ¢ to f correspond to
the “don’t care” character familiar from conven-
tional schemata.

O R, N Wk~ O
|
|
|
|
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formae, and again an obvious starting point is equiv-
alence relations based on the lowest-order formae.
Thus the equivalence relation ¢ which induces the
forma described by (¢) = {(z, N}, N])} would have
the same description set

() = {(x, Ng, N})} (43)
and would be defined by
1, ifm(z,n),m(z,{) < N,
or m(z,n), m(z,() € [N, N;]
1/)(77a<:) = T
Or m(x’ 77)’ m(x’ C) > N@"
0, otherwise,
(44)
where
[Ng, NJJ={n€Z|N; <n<Nj}.  (45)

As was the intention, formae can now specify a range
of multiplicities for any element; a single equivalence
relation can in fact be seen to suffice to define up to
three ranges simultaneously. The problem of finding
a basis for these equivalence relations will now be
considered.

The natural candidates to form a basis are the equiva-
lence relations which divide the range of multiplicities
for asingle element into a lower portion and an upper
portion, as shown in figure 9,

E= {1/) cv | <1/)> = {(l‘,O,N;)},x € gaNxT € [O,N*]}

(46)
where N* is the maximum allowed multiplicity for
an element. These equivalence relations can easily
be seen to be complete, for any “first order” equiv-
alence relation'® with a description set {(z, N}, N)}

19 Once genes have been defined, order can be defined for formae in a way
similar to the definition for schemata.
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Figure 9: The set of equivalence relations with
description sets of the form {(«z,0, N)} divide
the range [0, N*] into a lower and and upper
portion as shown: the equivalence relations may
be thought of as simple dividing lines at integer-
plus-half values.
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Figure 10: Any equivalence relation v defined
on a single element can be constructed as an
intersection of the elements in £ as defined in
equation 46. Here ¢ has the description set
() = (z,2,3) and is constructed as the inter-
section of ¢, with description set {¢);) = (z,0,1)
and (¥3) = (2,0, 3).

can be constructed as an intersection of the relations
with descriptionsets {z,0, N} and {(z, N}, N*)} (fig-
ure 10). Higher order equivalence relations can then
be constructed trivially by intersection. It is equally
easy, however, to see that the relations in £ do not sat-
isfy the condition of orthogonality specified in equa-
tion 26. To verify this, simply note that if a set is a
member of the forma with description set {(z,0,2)}
it cannot also be a member of the forma with the de-
scription set {(z,4, N*)}, as would be required if £
were orthogonal (equation 26).

Rather than abandon this potential basis, it is instruc-
tive to return to the analogy with linear algebra which
led to the original formulation of the conditions on
a basis, namely completeness and orthogonality. In

linear algebra there is a weaker notion than orthogo-
nality known as linear independence: a set of vectors is
said to be linearly independent if no one of them can
be expressed as a linear combination of the others.
Following the analogy, a set of equivalence relations
will be said to be independent if no one of them can be
constructed as an intersection of some of the others.
The set F defined in equation 46 satisfies this weaker
condition.?’

The purpose of introducing the notion of a complete
orthogonal basis for a set of equivalence relations was
to generalise the notion of a gene and allow a principle
of strict gene transmission to be extended to more gen-
eral formae. It will be demonstrated below that the
weaker notion of a complete non-orthogonal basis suf-
fices for the definition of genes, and thus is adequate
for the original purpose. The notion of independence
is formalised as follows:

¢ (Independence)
A set £/ of equivalence relations will be said to be
independent if no one of the relations ¢ € E can
be expressed as the intersection of some subset of
the others, i.e.

AvEEIE, CE: (Ey=4¢. (47
Using the same definition of genes and alleles for non-
orthogonal bases as for orthogonal bases, (i.e. genes
are the basic equivalence relations and alleles are the
basic equivalence classes) it is now possible to con-
struct the inheritance crossover operator induced by the
basis F for ¥, described by equation 46.

The inheritance crossover operation can be defined
in a way similar to random respectful recombination,
the difference being that instead of selecting from the
similarity set of the two parent chromosomes it selects
from the subset of chromosomes in the similarity set
which have every gene in common with one or other
parent. This subset, which for parents n and ¢ is writ-
ten n @ ¢, is called their inheritance set, and defined
by

no(={0ena(|VoeE:0eyully} (48)
where [5]y is the equivalence class induced by + to
which » belongs. The inheritance crossover operator
picks each element in the inheritance set of the par-
ents with equal probability, and both strictly transmits
genes and properly assorts formae provided that these
conditions are compatible. (The proof of this is identi-
cal in form to the proof that R® respects and properly
assorts a set of formae, section 5.1.)

20 A rather minor point which should nevertheless be made in passing is
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that the formae now being considered violate the closure discussed in
Radcliffe [22, 23]: this turns out to be unimportant.



The formalism developed above can now be applied
to the problem of recombining fixed-size multisets.
The similarity set of two chromosomes (now multi-
sets) is the forma with the description set

(o) = {(x, NJ,ND) | Ny = min(m(z,n), m(z,()),

Nl = max(m(x, ), m(z, C)) }

(49)
This similarity set contains all those multisets of the
given fixed size N which have at least as many copies
of each element as the parent with fewer copies, and
no more than the number held by the parent with
more. For example, if the chosen fixed size for the
multisets is five, and the universal set £ is given by
equation 12, then given

n=4da,aabcl (50)
and
¢=a,b,b,c d}f (51)
the similarity set is described by
ma¢)= {(a,1,3),(b,1,2),(c, 1,1), (52)

(d,0,1),(e,0,0),(f,0,0)}.

The similarity set itself contains those multisets con-
taining {a, b, ¢} together with exactly two elements
from {a, a, b, d}. The inheritance set of any 5 and ¢ is,
for these equivalence relations, identical to the simi-
larity set. To see this, consider any basic equivalence
relation  with the description set

() ={(=,0,N)}. (53)
This has two equivalence classes, described by
() = {(,0. )}, (50

(&) ={(z, N +1,N"}.

If both parents belong to the same basic forma, then
their similarity set is clearly a subset of this forma. If,
however, they belong to different basic formae, then
since there are only two of these, the requirement that
their similarity set lie in their union is no restriction
at all. Thus inheritance sets for these equivalence
relations are indeed identical to similarity sets*' and
so it can be seen that strict gene transmissioniis in this
case no stronger a requirement than respect.

5.7 Variable-Size Multisets

Variable-size multisets can be dealt with simply by re-
laxing the constraint of fixed size as discussed in the
previous section. The formae then arrived at are sepa-
rable and the inheritance crossover operator (which is

21 This is not, of course, true in general.
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in this case identical to the R® operator) not only prop-
erly assorts and respects the formae, but also strictly
transmits genes as a direct consequence of the identity
of the similarity and inheritance sets.

In summary, R® for variable-size multisets simply in-
serts a number of copies of each element from the uni-
versal set which is bounded by the number of copies
in the two parents, and in doing so strictly transmits
genes and properly assorts the formae induced by
the equivalence relations generated by the complete
spanning basis of equation 46.

6 Non-Separability of Formae

Before going on to apply the results of section 5 to
the problem of optimising neural network topologies,
it is appropriate to consider the general problem of
non-separability of formae, which arises from some of
the formae, bases and recombination operators con-
structed thus far.

6.1 Background on Formae

There were a number of motivations for the forma
analysis developed by Radcliffe [22, 21, 23], the most
important of which can be summarised as follows:

1. Nature of Representation.

Holland’s schemata are defined for fixed-length
strings for which each locus has a well-defined
allele set, with the implicit assumption that all
distributions of alleles over loci represent valid
solutions. For many problems, including those
from graph theory, set theory, constrained opti-
misation and neural networks, no useful coding
of this form is known. In any case, itis frequently
very much more convenient to store and manipu-
late structures in a non-string form, as is the case,
for example, with Koza’s evolution of Lisp pro-
grams (Koza [13, 14]). A generalisation was thus
required.

2. Genotype-Phenotype Mapping.

Schemata are defined in the representation space
and thus group together genotypes (chromo-
somes). Where the genotype and phenotype
spaces are isomorphic (thatis, every chromosome
corresponds to exactly one solution in the real
search space & and conversely every solution in
S isrepresented by exactly one chromosome in C)
this is probably acceptable, but where the map-
ping is more complex than this it may be desirable
to define formae in the true search space S.



3. Redundancy.
A particular example of the inadequacy of
schemata arises when the coding introduces re-
dundancy, as tends to be the case in graph and
set optimisation problems (see section 2).

4. Generality.

The groupings of chromosomes which can be
expressed by schemata are variegated and have
been shown to be sufficiently general to be useful
in many problems. Nevertheless, there are many
other cases where it is desirable to be able to use
other partitionings of the search space. Forma
analysis allows this.

5. Intrinsic Parallelism.

The counting argument which is sometimes used
to claim that binary representations are more
powerful than those of higher cardinality ap-
plies only if attention is restricted to traditional
schemata. If more general formae are consid-
ered, the argument no longer holds. The degree
of intrinsic parallelism which can be inferred is
defined entirely by the selection of formae (Rad-
cliffe [22, 21]).

Having shown that the “schema theorem” applies to
general formae in exactly the same way as to schemata
given suitable expressions for the disruption coeffi-
cients (Radcliffe [22],Vose [32]) the question became
how to manipulate formae sensibly. Guidance was
taken from studies of the traditional crossover opera-
tors for conventional linear chromosomes.

The three characteristics of recombination operators
which were suggested to be desirable are as follows:

o Respect.

The formulation of the principle of respect was
motivated by a desire to ensure that in cases
where the parents share some attribute, children
are guaranteed to inherit that attribute also. (This
is qualified only by mutation, which is tradition-
ally understood to serve the important but sec-
ondary rdle of ensuring that the entire search
space remains accessible (Holland [12]), though
see also Schaffer and Eschelman [27] and refer-
ences therein.) Thus respect requires that when-
ever two parents are both a member of some
forma, all their offspring be members of that
forma also. This principle has been indepen-
dently formulated by Vose [32, 33].

o Gene Transmission
Respect alone is not enough to ensure that ev-
ery gene possessed by a child is taken from one
or other parent. The introduction of the notion

of a complete orthogonal basis for a set of equiva-
lence relations which induce the chosen formae
allowed a general notion of gene to be formalised
(Radcliffe [23]) and thus allowed a principle of
(strict) gene transmission to be formulated. The
introduction of non-orthogonal bases in this pa-
per allows further application of the principle. It
should be noted that gene transmission implies
respect.

e Assortment
The notion of assortment can be viewed as an ex-
tension and formalisation of the “building-block
hypothesis” (Goldberg [5]) which expresses some
of the most fundamental beliefs about the way in
which genetic search proceeds. The key idea is
that by recombining two solutions it is sometimes
possible to piece together a solution which com-
bines properties of the two parents. A recombi-
nation operator is said properly to assort a set of
formae if it is the case that whenever one parent n
is a member of one forma ¢, and another parent ,’
is a member of another forma &', then provided
that the intersection of the two formae is non-
empty (that is, provided that some chromosome
exists which is a member of both formae) it is pos-
sible that the recombination will produce a child ¢
which is a member of both formae, i.e. § € £N¢’.

Itis interesting to note that while traditional one-
point crossover (or indeed, n-point) does not
properly assort schemata in the absence of an
inversion operator, when inversion is present,
it does.””  Uniform crossover, on the other
hand, does properly assort schemata. Moreover,
while one-point crossover does not properly as-
sort schemata in the absence of inversion, it does
weakly assort them in the sense that given a finite
number of generations and applications, it does
have that ability to assemble a chromosome in
the intersection of any two compatible schemata,
given suitable parents.

The problem faced in the case of fixed-size sets and
multisets with the formae discussed in section 5 is
that the requirements of respect and assortment are
incompatible, so that the formae are said to be non-
separable. This is illustrated in figure 11.

6.2 Examples of Non-Separability

Examples of non-separable formae have already been
seen in sections 5.2, 5.5 and 5.6, and the previous diffi-
culties in even respecting reasonable formae for prob-

22 This assumes that linkage is taken to be unspecified.
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Figure 11: The top figure shows non-separable
formae. Notice that the intersection of £ and ¢’,
while non-empty, does not lie within the simi-
larity set of chromosomes 5 € £ and »’ € ¢. The
bottom figure shows separable formae.

lems in neural networks has also been mentioned in
section 2. The travelling sales-rep problem (TSP) pro-
vides further interesting examples of non-separability.
Whitley [40] and Radcliffe [23] have both argued that
in tackling the TSP it is essential to focus attention on
edges rather than nodes.

There are two obvious sets of formae which might
be constructed for the TSP which are based on edges,
the difference being whether the edges are consid-
ered to be directed or undirected. In either case, a
forma is characterised by a set of edges which a tour
must contain in order to be an instance of the forma.
Radcliffe [23] has show that non-directed edge for-
mae are not separable using the example in figure 12.
The example in figure 13, which is due to Vose [31],
suffices to show that directed edge formae are also
non-separable. It should be noted, however, that this
second example relies on the introduction of a cycle,
which is only permitted if the cycle forms the entire
tour. In this sense, the problem with directed edges is
perhaps less severe than with non-directed edges.

Whitley has constructed a genetic edge recombination
operator with the specific aim of ensuring high trans-
mission of edges from parents to children.?® The first
version of this operator (Whitley et al. [40]) did noten-

22 1t should be noted that transmission of edges is subtly different from trans-
mitting edge-formae (see section 6.4).
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Figure 12: The tour fragment on the left is a

member of the forma described by {23}, which
contains all tours which include the 2-3 or the
3-2 edge. Similarly, the tour fragment on the
right isa member of the forma described by {24}.
Since both tours are also a member of the forma
described by {12}, however, if these formae are
to be respected all of their children must con-
tain the 1-2 edge, thus preventing a child being
produced which is a member of the forma de-
scribed by {23, 24}, the intersection of those de-

scribed by {53} and {541}. Thus these formae are
non-separable.

i @ 4
Y 3
2 @ 2
1@ 1

/

n n

Figure 13:  is a member of the directed edge forma
described by (¢) = {13,31}, containing those
tours which include the directed edges 12 and
34, Similarly, » is a member of the forma de-

scribed by (¢') = {4_1}. Since, however, both 5
and »’ are members of the directed edge forma

described by {53}, respect requires that all their

children contain the 23 edge, thus preventing the
construction of amember of ¢ N¢’, which has the

description set {13, 3711, 4_1}.




sure respect since itallowed children to be constructed
which did not possess an edge common to both par-
ents. It also failed to ensure proper assortment, by
concentrating exclusively on high transmission rates
for edges. A second version of the operator was con-
structed specifically to ensure respect®! (Whitley et
al. [41]) and in so doing guaranteed that proper as-
sortment was violated.

The important point to note here is that if it is accepted
that edges (whether directed or otherwise) hold the
key to the TSP, the problem of non-separability arises
immediately.

6.3 Exploitation and Exploration

In cases such as fixed-size set recombination and the
travelling sales-rep problem it is clear that some ac-
commodation between respect and assortment will
be required if the formae suggested are to be manipu-
lated effectively. The conflict can be viewed as an un-
usually sharp form of the familiar trade-off between
exploitation of information already gathered (encapsu-
lated by respect and gene transmission) and adequate
exploration of the search space (encapsulated by as-
sortment), as discussed by Holland [12].

The counter-examples used to show that the fixed-
size set- and multiset formae are not separable and
to show the same for both directed and non-directed
edge formae for the TSP share rather similar charac-
teristics, so that focusing on a single example will have
relevance to them all. For simplicity, the example for
fixed-size set formae used at the end of section 5.2 will
be revisited. Recall that the problem is that the sets

n=1{abc} (55)
and

n ={a,de} (56)
of size three are respective members of the formae ¢
and ¢’ described by

(€ ={b,c} (57)
and

() =1{d}, (58)
but that the sole member of the intersection ¢ N ¢ is

6=1{bcd}, (59)

which does not lie in the similarity set n 4 ¢ described
by

(n@¢) ={a}. (60)
The effect of giving primacy to respect (as do all R?
operators) is to make impossible the construction of

24 though it was not discussed in these terms
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the solution @ from these parents. This extremely wor-
rying, not least because experience shows that prema-
ture convergence is a common problem with genetic
algorithms. Thus if, in the present example, the pres-
ence of « in a solution is generally beneficial in the
early stages of genetic search, but ¢, which does not
contain «, is the optimum, it is quite possible that
a will become represented in every chromosome in
the population early on so that the presence of so-
lutions such as n and ¢ in a later population would
not allow the optimum to be constructed even though
all of the necessary “building blocks” would appear
to be present. Genetic search would be entirely de-
pendent in this circumstance on a mutation which
eradicated the element « from a solution, a situation
which though not irretrievable seems better avoided.
This prospect, which could equally easily manifest
itself in more realistic, larger-scale examples, is suf-
ficiently worrying to suggest that assortment should
be given precedence over respect, the lack of which
would seem likely to do no more than delay progress
towards an optimum, rather than imposing mutation-
dependent barriers. Similar comments apply equally
to the edge formae discussed above.

6.4 Assortment

While the preceding discussion has suggested that
assortment should take priority over respect when
there is a conflict, this does not mean that respect
should be altogether discarded in such situations. A
parameterised operator will now be introduced which
allows the priority given to the two considerations to
be varied, so that with the parameter set at one end of
the scale respect is complete (and proper assortment
is violated) and as the parameter is adjusted ever-less
regard is paid to the requirements of respect.

Consider the R* operator for fixed-size sets. This has
been described as having two stages: the first con-
structs a partial child which contains only the inter-
section of the two parents; the remaining spaces in
the child are chosen at random from the remaining
elements which the parents contain. An alternative
approach, which would ensure proper assortment but
drastically violate respect, would involve discarding
the first stage and simply picking elements from the
union of the two parents at random. This approach
would attach no weight at all to the fact that some el-
ements were present in both parents and in this sense
would have entirely disregarded respect.

These two extremes can be interpolated between by
attaching a weight to elements of the union, with el-
ements of the intersection being accorded a higher



element a b c d e f
weight 2 1 1 1 1 O
probability 1/3 1/6 1/6 1/6 1/6 0

Table 1: Weights for a parameterised assorting re-
combination operator of weight 2, given parent sets
n=14a,bctand { = {a,d e}. The last line shows
the probability that each element will be included in
the child.

weight than those present in only one parent. The
probability of picking an element could then be made
proportional to its weight. It would seem reasonable
to set the weight of elements in the intersection to at
least twice that of other elements since these elements
were present twice, once in each parent. In the case of
the example used above (equations 55-60) this would
lead to the weights shown in table 1. Clearly higher
weights than two could be used to ensure a greater
degree of respect, but the higher the weight is made,
less assortmentwill be performed. The generalisation
to multisets is given in section 9.1.3.

Constructing similarly parameterised operators for
the TSP which could be computed efficiently is more
difficult, though a paper specification for them is pos-
sible.

7 Neural Network Topologies

The professed purpose of developing the machinery
of set and multiset formae was to aid the applica-
tion of genetic search to problems in neural networks,
though the set and multiset optimisation problems are
of independent interest. The formulation of network
topology optimisation given in section 2 was chosen
to bring out the multiset-like nature of the problem.

Recall that if attention is restricted to feed-forward
networks with a single layer of hidden units then a
network topology can be described as a multiset of
hidden units each of which is specified by its set of
external connections (figure 4). This is an entirely
non-redundant representation to which the results of
the forma analysis of earlier sections can immediately
be applied. In principle, this should allow genetic
search to proceed efficiently.

There is, however, an obvious complication. Suppose
that a modest network with ten input nodes and ten
output nodes is to be considered, and that up to ten
hidden units will be employed (the example used in
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section 2). In this case the size of the search space
is about 4 x 10°3 (equation 2). The problem is not
the size of this search space (which is fairly modest
by the standards of genetic algorithms) but the fact
that each chromosome will contain at most ten hid-
den units, while the number of hidden unit types is
22° ~ 10°. Thus, even if a population of 10,000 were
employed, less than one percent of the available node
types could be included in the population. If the node
types are considered as atomic and not available for
recombination it will be extremely difficult for the ge-
netic algorithm to make progress.

Of course, this situation is not unfamiliar in genetic
search, for in the classic case of parameter optimisa-
tion exactly the same predicament arises. If, for exam-
ple, ten parameters are to be optimised, each coded
using twenty bits, the similarity should immediately
be clear (though in this case the search space would
be larger, because each of the parameters would nor-
mally have a meaning, so that this is not a set opti-
misation problem). The solution usually employed
is to allow recombination to take place at the sub-
parameter level either through employing binary or
other low-cardinality encodings or by using recombi-
nation operators which make use of knowledge of the
high-level meaning of parameters. (For examples of
the latter see Davis [4] and the discussions of range
formae in Radcliffe [22, 23]; for a sceptical view see
Goldberg [7]).

By exploiting this analogy it will be possible both
to construct a sensible genetic approach to network
topology optimisation and to shed a little more light
on traditional parameter optimisation.

7.1 High Cardinality Representations and Gene
Recombination

Consider the classic parameter optimisation problem
where the search space is comprises vectors

V= (v1,v2,...,0n) (61)
so that
S=Lxhx---xI,CcR" (62)
with
Ii = [a;, b;] (63)

and the intervals I; are understood to be discrete ap-
proximations to their continuous counterparts. Using
k bits per parameter, the typical chromosomal repre-
sentation would employ

c=B" (64)

where

B=1{0,1}. (65)



A chromosome n € C would be given by

n= (7711, mz2, -, Tk, (66)
N21, MN22, ..., 72k,
M, Tm2, .-, nnk)a
where v; is represented by (mi1,7i2,..., i), |If

schemata are defined in the space C of chromosomes
then uniform crossover respects and properly assorts
the schemata

Ec={0,1,0}"" (67)
and strictly transmits genes. On the other hand, if
schemata are defined in parameter space S, as defined
by equation 62, so that

then uniform crossover in chromosome space C nei-
ther respects the schemata in =s nor transmits param-
eters, though it does assort them.

n

25 = (H (IZ» U {D})

i=1

(68)

Thus transmission of genes and respect can in these
cases be seen to be sub-parameter level concepts. A
number of observations follow:

1. Using one-pointcrossover in the absence of inver-
sion, most parameters will be transmitted whole:

a maximum of one will be crossed.

Using one-point crossover in the presence of
inversion, any number of parameters may be
crossed.

Similar comments apply when using two-point
crossover (except that up to two parameters may
then be crossed), and this is true even using
Booker’s reduced surrogate form (Booker [2]).

With uniform crossover, any number of parame-
ters may be recombined.

Although the parameter-space schemata = are
properly assorted by uniform crossover applied
in the space of binary chromosomes C, the proba-
bility of generating achild in the intersection£n¢’
given

nEEEEs (69)
and

ne¢ €zs (70)
is much lower than if uniform crossover is ap-
plied in the parameter space.”” For example, in
S

(7,8) @ (5,3) = {(7,3),(7,8),(5,8),(5,3)}, (T1)

25 This is true if 1-point crossover with inversion is applied in C also, though
in this case the linkages should in principle make useful crosses more likely.
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having four elements, whereas in C

(0111, 1000) & (0101,0011) = (0101, DoO0),
(72)
where the right hand side is understood to be a
set with sixteen elements.

It is useful, especially in the current context, to think
of uniform crossover as applied at the bit-level as hav-
ing two components, the first of which randomly se-
lects each parameter from one or other parent, while
the second crosses these parameters. (Of course,
the fact that each component is subsequently crossed
means that the initial choice is irrelevant.) Similarly,
one-point crossover in C (without inversion) can be
thought of as first randomly crossing the whole pa-
rameter string in S, and then crossing the parameter
at the interface at the bit level. The two approaches
could be combined.

This way of thinking about conventional operators
suggests a solution to the problem of the extremely
high cardinality of the neural network topology rep-
resentation suggested above.

7.2 Crossing Hidden Nodes

The proposed way of tackling neural network topol-
ogy optimisation makes use of the previously dis-
cussed breakdown of recombination into two stages.
Most of the nodes in the child (say all but one) will
be generated using the multiset recombination oper-
ators introduced in section 5. The final node or nodes
will be produced by directly crossing nodes from the
two parents. This turns out to be an extremely simple
matter because the hidden nodes have already been
conveniently described as binary strings (figure 4).
Moreover, this binary representation of a hidden unit
is highly meaningful and completely non-redundant:
a one indicates the present of a connection to an ex-
ternal node and a zero indicates its absence. Thus
uniform crossover is the natural operator to use to
perform the sub-node level cross, since it transmits
genes and properly assorts the schemata which are
the natural formae for describing hidden units.

7.3 Direct Input-Output Connections

The formulation thus far has concentrated on strictly
layered networks so that direct connections from the
input nodes to the output nodes have not been con-
sidered. Each such connection can, however, be de-
scribed perfectly and without redundancy by a binary
gene, and thus if such connections are to form part
of the optimisation they may simply be added to the



chromosome. Such portions of the gene can be recom-
bined using uniform or some other standard crossover
operator without further complication.

8 Linkage and Forma Disruption

The discussion of recombination operators in
the previous sections has not considered two
much-discussed and intricately related aspects of
recombination—linkage between the components of
a solution and disruption rates for formae. These will
now briefly be reviewed.

When Holland introduced genetic algorithms with
his seminal 1975 book (Holland [12]), he listed three
generic operators—crossover, mutation and inver-
sion. While there have been experiments with in-
version, which are summarised in Goldberg [5], and
while there is still a belief among some workers that
as more complex problems are tackled the inclusion
of inversion will be found to be more helpful, inver-
sion operators are rarely now used in practice. The
issue of linkage is, however, relevant not only to tra-
ditional linear chromosomes. In the case of the set
and multiset operations which form one focus of this
paper it would be easy to add linkage information in
the usual way, to manipulate this information through
inversion or other operators, and to use it to modify
the probability of groups of genes being transferred to
children en masse.

Similarly, the uniform crossover operator with param-
eter half*® is widely criticised for being unduly dis-
ruptive both of short schemata and of longer ones, the
latter effect arising because uniform crossover with
parameter half is biased towards taking half the ge-
netic material for a child from each parent (Schaffer
et al. [26], Syswerda [30], Radcliffe [21]). It has been
pointed out, however, by Spears and De Jong [29] that
by using parameters other than half with uniform
crossover its degree of disruptiveness can be com-
pletely controlled. Whether or not uniform crossover
appears more attractive is therefore primarily a func-
tion of whether there is any a priori reason to believe
that the arrangement of the genes on the chromosome
groups together bits which should be tightly coupled.
(Where parameters are laid out on continuous seg-
ments of the chromosome, there is a strong argument
that this is so.)

Justas uniform crossover can be parameterised to con-
trol the amount of genetic material ittends to take from
each parent, the weights of the elements used to deter-

26 e equal probabilities of taking each gene from either parent
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mine the child in the manner described in section 6.4
can be used to control the degree of forma disruption
exhibited by the recombination operators discussed
in this paper.

9 Discussion and Summary

This paper contains a number of disparate threads,
principal among which are the application of genetic
algorithms to problems in neural networks and the
application of forma analysis to the construction of
suitable operators and representations for (multi)set
recombination. These considerations have required
a number of sub-discussions, including the intro-
duction of non-orthogonal bases for equivalence re-
lations and a consideration of sub-parameter level
recombination with particular reference to crossing
hidden nodes in neural network topologies. Each
of these subjects is now set in context and—where
appropriate—summarised.

9.1 Setand Multiset Recombination

Set recombination can be regarded as a special case of
multiset recombination in which the maximum num-
ber of copies of any element is one. A distinction
must, however, be made between fixed- and variable-
size multisets.

9.1.1 Formae and Equivalence Relations

Generic formae for multisets specify ranges of val-
ues for the multiplicities of elements drawn from a
universal set £. These formae are induced by equiva-
lence relations ¥ over the search space of which a low
precision example is given by equation 44:

1, ifm(z,n),m(z,{) < N}
,() € [Ny, N;]
z,() > N/,

or m(x,n), m

b, €) = E

or m(x,n), m

0, otherwise.

This equivalence relation is described by the descrip-
tion set {(z, N}, N)}. A basis for these equivalence
relations is given by equation 46:

E={ypeV|({¥)={(x,0,N)},x€&N, [0, N}

9.1.2 Variable-Size (Multi)set Recombination

The inheritance/R? operator for these formae gener-
ates a child ¢, given parents n,{ € C [= P,(&)] as
follows.



e For each element = € £ set m(z, #) so that
m(x,0)

max(m(x, n), m(x, C)),

(73)
where m(z, ) is the number of copies of z in »,
and in the case of sets (as opposed to multisets)
m(x,n) € {0,1}. In each case a uniform random
choice is made between the maximum and mini-
mum allowed values for the multiplicity.

min(m(l‘, n), m(z, C))

IN A

This operator respects and properly assorts the formae
induced by the equivalence relations in ¥, and trans-
mits the genes identified with the basic equivalence
relations in £. The operator can be biased towards
the multiplicity of one or other parent without violat-
ing these properties. Notice that

nNCCOCpUC. (74)

9.1.3 Fixed-Size (Multi)set Recombination

The corresponding inheritance crossover operator for
multisets of fixed size N generates a child 4 from par-
ents n and ¢ as follows:

1. Let
ng(n, ) = min (m(z, ), m(z,¢))  (75)

and

nz(n,¢) = max(m(w,n),m(z,¢)).  (76)

Then for each z € £ set the initial values for the
multiplicity to be the minimum of that of the two
parents:

Ve e &: m(z,0;) = n.(n,C), (77)

where the subscript i on 6; indicates that this is
the initial child only.

Fill the remaining

N =" n:(n,¢)

z€eE

places in the child ¢ by increasing the multiplicity
of elements at random subject to the following
conditions on the final child &,

Ve e &: m(z,0) < nl(n), (78)

and

|6] = N. (79)
This operator respects formae and strictly transmits
genes but does not assort them because the formae are
non-separable. For this reason, the following alterna-
tive assorting recombination operator is to be preferred:
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1. Assign to each element z in £ a weight
wy = m(x,n) + m(z, ). (80)

2. Filleach available place in the child in turn picking
each element x with probability

p(z) = wx/z Wy

z'e€
subject to the constraints on the final child ¢ given
by equations 78 and 79.

(81)

9.1.4 Mutation

In the case of multiset (as opposed to set) recombina-
tion, there is a bias in the operator towards the middle
of the range of allowed multiplicities for elements.
This should be redressed by the use of end-point muta-
tion operators as discussed in Radcliffe [22, 23]. These,
with low probability, set the multiplicity of some el-
ement in a child to 0 or N* (the maximum allowed
value), making any other necessary adjustments if
multisets are of fixed size.

9.2 Neural Networks

By framing three-layer neural network topology op-
timisation as a multiset problem over hidden nodes,
each complete with external connections, the follow-
ing have been achieved:

¢ anon-redundant representation;

o the multiset recombination operator discussed

above may be applied;

o suitable formae exist which can be separated.

Because, however, of the very large size of the uni-
versal set &, consisting of all possible hidden unit
types (2" for networks with n external (input/output)
nodes), recombination of hidden units is also advis-
able. If the hidden nodes are described by binary
strings, with each bit representing an external con-
nection, conventional crossover operators (uniform,
n-point etc.) can be used to perform this cross in the
controlled ways advocated in section 7.2.

Experimental verification of the efficacy of this ap-
proach remains to be demonstrated. An integrated
scheme for optimising connectivity and weights also
requires further work and might be regarded as the
“Holy Grail” in this area.

9.3 Non-Orthogonal Bases

The introduction of non-orthogonal bases is a signifi-
cantinnovation for formaanalysisand allows a deeper



study of problems for which schemata are not appro-
priate and for which an orthogonal basis for equiv-
alence relations inducing appropriate formae is un-
available.

Given a complete orthogonal basis £ for a set ¥
of equivalence relations which induce the chosen
formae, a chromosomal representation can be con-
structed by allocating one locus to each basic equiva-
lence relation in £

Lerleafeafeafes[eaferfea | [en]

where |E| = n. The basic equivalence classes (basic
formae) then serve as the alleles. Uniform crossover
strictly transmits these genes and properly assorts the
formae. The critical point here is that with an orthog-
onal basis, any chromosome of this form represents
some legal solution in § uniquely and every solution
in S has one such chromosomal representative.

In the case of a non-orthogonal basis, not all chro-
mosomes of this type are legal: constraints exist on
the permitted combinations of gene values (alleles).
The work in section 5.6 shows, however, that while
traditional crossover operators (uniform, n-point etc.)
cannot manipulate these formae and solutions effec-
tively, the inheritance crossover operator will respect
the formae and transmit genes while properly assort-
ing whenever these conditions are compatible. In
cases where gene transmission prevents proper as-
sortment, operators such as the assorting crossover of
section 6.4 can provide reasonable alternatives.

It is hoped that the examples in this paper convinc-
ingly demonstrate the flexibility of forma analysis,
and the insights which it can provide.
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