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ABSTRACT
Uplift models, which predict an individual’s change in be-
havior due to a specific intervention such as a marketing
campaign, have become increasingly popular in both busi-
ness and scientific fields because they allow direct compari-
son between the cost and potential return of a discretionary
action. Because the change in behavior due to an action can
not be observed for any isolated individual (since they can-
not be both subject to the action and not), traditional ap-
proaches both for fitting models and evaluating model qual-
ity do not apply directly. Although a variety of methods
for fitting uplift models continue to be proposed, surpris-
ingly little work has been done on metrics for assessing and
comparing model quality.

This paper reviews potential metrics by analogy with tra-
ditional models, including nominal, ranked and parametric
measures. In particular, we recommend the Qini coefficient
(Radcliffe, 2004) and establish a strong mathematical cor-
respondence with the traditional Gini coefficient which in-
spired it. The Qini is shown to measure the strength of
(anti-) correlation between uplift rate and targeting depth
as ordered by model score. Several equivalent geometric in-
terpretations of Gini and Qini are demonstrated, including
a generalization of the traditional Lorenz curve. This yields
both a more effective practical approach for calculating the
Qini coefficient, as well as suggesting an extension of the
Kolmogorov-Smirnov statistic to uplift models.
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1. INTRODUCTION
Uplift modeling is rapidly gaining mindshare in the analy-
sis of large-scale business-to-consumer marketing programs
(Radcliffe & Surry, 1999; Hansotia & Rukstales, 2001, 2002a;
Lo, 2002; Courtheoux, 2003; Lai, 2004; Manahan, 2005), as
well in other domains such as personalized medicine (Cai
et al., 2009). Alternatively known as incremental modeling,
differential response modeling, true lift or net lift model-
ing, uplift modeling1 allows the marketer to address a more
relevant business problem than is possible with traditional
modeling techniques. Typical models for churn, response or
credit risk predict the likelihood of an event, or more gen-
erally, the level of a continuous outcome such as spend or
customer lifetime value, often restricted to those individuals
targeted by some marketing activity. In contrast, an up-
lift model uses both treated and control data to predict the
likely change in the outcome that will result from a partic-
ular marketing action.

The development of uplift modeling techniques has suffered
from a lack of accepted quality metrics for models, mak-
ing it difficult to choose between models for a given prob-
lem instance, and to assess the relative efficacy of models
across problems. Practitioners tend to resort to ad hoc com-
parisons of model “power”, most commonly based a chart
such as figure 1 showing actual uplift by decile of model
score. For example, several authors suggest comparing the
uplift within the top k deciles to the overall uplift (typically
for k <= 4, e.g. Lo, 2002; Hansotia & Rukstales, 2002b;
Lai, 2004; Larsen, 2010). In practice we have also often ob-
served qualitative criteria applied, such as seeking a mono-
tone decreasing pattern of uplift across deciles.

While comparison of uplift above a fixed cutoff is a simple
and convenient metric, it is not a altogether satisfactory.
Changing the cutoff can reverse the results of a comparison,

1We prefer the term uplift when comparing treated and
control outcomes to avoid confusion with the common us-
age of lift in comparing (traditional) model targeteing to
random selection (e.g. Piatetsky-Shapiro & Steingold, 2000;
Piatetsky-Shapiro & Masand, 1999).



and unless confidence intervals are calculated and presented
(a practice we strongly encourage), can also misleadingly
suggest one model is “better” than another when in fact they
are statistically indistinguishable. In numerous practical ex-
amples we have seen confidence intervals on uplift deciles
that do not separate any deciles from the overall uplift, and
we must resort to pentiles or even terciles to find meaningful
differences.

Model decile

Uplift

1 10

Figure 1: A typical presentation of results from an
uplift model, showing uplift for each decile of the
model. Model quality might be measured by the
ratio of uplift between the top and bottom decile,
or between the top decile and the overall uplift.

This paper surveys potential metrics by analogy with tra-
ditional models, including nominal, ranked and parametric
measures. In particular, the Qini coefficient (Radcliffe, 2004),
inspired by the Gini coefficient (Gini, 1912), is recommended.
A mathematical correspondence between the two is estab-
lished, in which the Gini measures the strength of (anti-)
correlation between outcome rate and targeting depth (as
ordered by model score), and Qini measures the strength of
(anti-) correlation between uplift rate and targeting depth
(again ordered by model score). Several equivalent geomet-
ric interpretations of Gini and Qini are demonstrated. This
yields both a more effective practical approach for calculat-
ing the Qini coefficient, as well as a generalization of the
Kolmogorov-Smirnov statistic for uplift models.

2. QUALITY MEASURES
A wide variety of quality metrics are employed for tradi-
tional modeling applications, ranging from nominal non-
parameteric measures on 2 × k contingency tables (confu-
sion matrix, chi-square, information gain), through ordinal
(ranked) metrics on contigency tables or sorted outcomes
(Gini coefficient, Kolmogorov-Smirnov statistic), to para-
metric statistics such as R2, divergence and maximum like-
lihood measures. For example see Malthouse (2001).

In the uplift case, point-wise parametric measures can not be
applied since the true point-wise uplift outcome is unknown
(an individual can not be both treated and not treated to
measure the change in behavior).

Nominal measures on 2 × 2 contigency tables are useful to
evaluate behavior at a predetermined cutoff, for example
difference in lift at the k-th decile as noted above. They
have also been employed in split criteria for uplift decision
trees: indeed our original method (Radcliffe & Surry, 1999,
2011) measures the signficance of the interaction term in

a linear model of the contingency table. Hansotia & Ruk-
stales (2002a) evaluate simple differences in uplift across a
cutoff, but it seems certain that relative population sizes
must also be considered.

Measures on 2×k contingency tables are useful both to eval-
uate multi-way splits and as a variable selection technique
for nominal variables. Rzepakowski & Jaroszewicz (2010)
and Larsen (2010) present alternative generalizations of the
Kullback-Leibler divergence to the uplift case. Rzepakowski
& Jaroszewicz employ it as split criterion to build an up-
lift decision tree, while Larsen presents his definition as a
variable selection technique, couched in the terminology of
credit scoring as a Net Information Value (extending the
weight of evidence and information value used in traditional
binary models). It is unclear whether either form preserves
a straightforward interpretation as the rate of information
gain supporting a postitive versus negative outcome. Rzepakowski
& Jaroszewicz (2010) also suggest the squared Euclidean dis-
tance between contigency table probabilities

Ranked methods are promising as a bridge towards param-
eteric methods (Conover & Iman, 1981), both for model
performance evaluation (using the ranking induced by the
model), and for ordinal and continuous variable selection.
The Kolmogorov-Smirnov statistic is used with traditional
binary-outcome models and measures performance at the
“best” cutoff (that which minimizes the sum of positive and
negative misclassification rates). However it is not as useful
in summarizing model performance across a range of cut-
offs, where the Gini coefficient is preferred. For example,
the ranked list of binary outcomes 1111010101010000 and
0101111100000101 have equal K-S values (50%) but very
different Ginis (75% vs. 25%), since the latter ranking per-
forms poorly for very low or high cutoffs.

In the remainder of this paper, we explore the generaliza-
tion of the Gini coefficient to uplift models, and suggest an
similar generalization of the K-S statistic.

3. THE GINI COEFFICIENT
Consider a predictive model M that induces a rank order-
ing on a target population, allowing us to observe the point-
wise outcome rate fM(x) : [0, 1] → IR where x is the tar-
geting depth.2 Figure 2 shows a typical plot of outcome
rate f(x) (dropping the subscript M to simplify notation)
versus targeting depth, x, with the average outcome rate
f̄ =

∫ 1

0
f(x)dx.

Further define the cumulative outcome rate, F , as a function
of x, namely F (x) =

∫ x

0
f(y)dy, resulting in the standard

“gains chart” shown in figure 3. Note that F (1) ≡ f̄ , and
f(x) ≡ dF

dx
.

The Gini coefficient is traditionally used to measure the de-

2Note that the point-wise outcome rate is presented here
as a (piecewise) continuous function of x for generality and
simplicity. This embraces the typical discrete case of making
predictions for a finite set of individuals, by spreading the
probability density associated with any discrete score (in-
cluding groups of tied scores) equally across an equivalent
interval of continuous ranks. In short, this results in fM(x)
finite and piecewise continuous on [0, 1], and thus integrable.
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Figure 2: A typical plot of observed outcome rate
versus targeting depth as ranked by model score.
Because individuals with the best predicted out-
comes are targeted first (x = 0), a good model tends
to induce an observed outcome curve that decreases
to the right, but in all cases f is finite and piecewise
continuous (see footnote). For a binary outcome,
f ∈ [0, 1], and if M produces no ties, f ∈ {0, 1}.
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Figure 3: A typical “gains chart” plots the cumu-
lative outcome rate, F =

∫ x

0
f(y)dy, as a function of

targeting depth. A random model produces no gain
over the diagonal, while a good model tends to pro-
duce the bow-shaped curve sketched here because
the model ranks higher outcomes to the left.

gree of income inequality within a population, and is defined
using a Lorenz curve (Lorenz, 1905) that plots the cumula-
tive proportion of income as a function of the cumulative
population size (sorted from lowest to highest income). The
Lorenz curve is simply a (reversed) gains chart in which the
model is equal to the outcome, i.e. the population is ranked
by observed rather than predicted outcome. This is equally
applicable to any non-negative outcome, and as shown later,
generalizes to arbitrary real-valued outcomes.

In traditional credit scoring and direct marketing usage,
where a binary outcome is the most common target for pre-
diction (e.g. response indicator, credit-default flag or stay/go
churn outcome), the Gini coefficient, GM, for a predictive
model,M, is normally measured using a “receiver operating
characteristic” (ROC) curve (Green & Swets, 1966). The
ROC curve plots the cumulative proportion of negative ver-
sus positive outcomes, with the population sorted by model
score, as illustrated in figure 4. GM is defined as the ratio
of the (signed) shaded area under the curve to the area of
the upper triangle (representing the ordering induced by the
best possible model,M∗, which ranks all positive outcomes
before any negative ones).
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Figure 4: For a binary outcome, the Gini coefficient
GM is defined for a model M using the “Receiver
Operator Characteristic”. The population is sorted
by model score (most likely to be positive first), and
the cumulative rate of positive outcomes is plotted
against the cumulative rate of negative outcomes.
GM is equal to the ratio A/ (where A∗ includes A).
The ROC curve also provides a graphical interpre-
tation of the K-S statistic: the intersection of the
tangent drawn parallel to the diagonal y = x gives
the cutoff that minimizes the sum of the positive
and negative misclassification rates, with the tan-
gent’s intercept equal to the K-S value.

Lemma 1. For a binary outcome, the value of GM de-
fined using the ROC curve is equal to the value derived from
the gains chart of figure 3. That is, GM can be equivalently
interpreted as the the ratio of the average excess cumulative
outcome induced by M to the same quantity induced by the
“best case” model ordering, M∗, as illustrated in figure 5.
This means we need only consider the gains chart formula-
tion for both binary and continuous outcomes.

Proof. In the binary case, figure 5 can be derived by a
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Figure 5: The Gini for income inequality was orig-
inally defined using the Lorenz curve, by plotting
cumulative proportion of income against cumulative
proportion of population and calculating G = A/A∗.
(In the original formulation, income was sorted from
smallest to largest, which simply rotates the area A
below the diagonal.) This definition is more general
than that based on the ROC curve (see figure 4)
since it supports continuous as well as binary out-
comes. In the binary case, the perfect model results
in the area A∗ = f̄(1 − f̄)/2 as shown, since the out-
come can at most accumulate at a rate of one unit
per individual. For a continuous model, the area A∗

could be defined by sorting the actual outcome from
smallest to largest (though the authors are unaware
of this being done in practice), or by using a verti-
cal line from the origin to F = f̄ , resulting in area
A∗ = f̄/2.

simple affine transformation of figure 4, namely:

(x, y) 7→
(
x− y

1− f̄
,
y

f̄

)
(1)

Because an affine transformation scales area by a constant
factor (f̄(1 − f̄) in this case), it is clear that the ratio of
areas A/A∗ is preserved. (This is easy to see intuitively by
imagining integration of both areas along the vertical axis in
figure 5: then G takes the form

∫
(x∆−xA)dF/

∫
(x∆−x∗A)dF

where both terms in each integrand are shifted by the same
function of F and scaled by a fixed constant.) Thus G is
equivalently defined in either diagram.

Theorem 1. The Gini coefficient, GM, is simply the nor-
malized (anti-) covariance between the outcome rate (induced
by the model M) and targeting depth.3 Specifically:

GM ≡
cov(f, x)

cov(f∗, x)
(2)

where f∗(x) is the point-wise outcome of the best achievable
model as a function of rank.

Proof.

cov(f, x) ≡
∫ 1

0

(f − f̄)(x− 1
2
)dx (3)

=

∫ 1

0

(f · x)dx− f̄

∫ 1

0

xdx

− 1
2

∫ 1

0

f(x)dx + 1
2
f̄

∫ 1

0

dx (4)

=

∫ 1

0

(f · x)dx− 1
2
f̄ (5)

Now, d(xF )
dx
≡ 1 ·F + x dF

dx
by the product rule, and dF

dx
≡ f ,

so that f · x = d(xF )
dx
− F and

cov(f, x) = xF
∣∣∣1
0
−
∫ 1

0

F (x)dx− 1
2
f̄ (6)

= −
(∫ 1

0

F (x)dx− 1
2
f̄

)
(7)

But the quantity in parentheses is exactly the area labeled A
in figure 5: the first term representing the total area between
the x axis and the curve, and the second term removing the
area of the triangle under the diagonal from (0, 0) to (1, f̄).

If we now calculate the covariance for the best case ordering
f∗(x) induced by M∗, we similarly derive the area labeled
A∗ in figure 5, so that:

GM ≡
cov(f, x)

cov(f∗, x)
(8)

For example in the binary case,

GM =
2
∫ 1

0
F (x)dx− f̄

f̄(1− f̄)
(9)

3Lerman & Yitzhaki (1984) independently establish a sim-
ilar result for the traditional Gini coefficient of income in-
equality.



4. THE QINI COEFFICIENT
For the uplift case, we are interested in the strength of rela-
tionship between the uplift rate induced by an uplift model
M and the targeting depth. Similarly to above, we define
the point-wise outcome rates induced by M, for both the
treated and control populations, as fT (x) and fC(x) respec-
tively. This is sketched in 6, with the uplift defined as

u(x) , fT (x)− fC(x) (10)

Targeting depth
x

f

0 1

f̄T

fT (x)

f̄C
fC(x)

u(x)

Figure 6: An uplift model induces a ranking on both
the treated and control populations independently,
resulting in the outcome rates fT and fC as a func-
tion of targeting depth (c.f. figure 2). We define
uplift point-wise as the difference between the two
rates.

As before, we further define the cumulative outcome and
uplift rates shown in figure 7:

FT (x) =

∫ x

0

fT (y)dy (11)

FC(x) =

∫ x

0

fC(y)dy (12)

U(x) , FT (x)− FC(x) (13)

Note also that ū ≡ U(1) and dU
dx
≡ u.

Theorem 2. Radcliffe’s Qini coefficients (Q, q0) are sim-
ply normalized (anti-) covariances between uplift and treat-
ment rate, specifically:

Q ≡ cov(u, x)

cov(u∗, x)
(14)

q0 ≡
cov(u, x)

cov(u∗0, x)
(15)

where u∗(x) is the uplift rate from the best potential model
ranking in the binary case, and u∗0(x) is the uplift rate result-
ing from the best potential model ranking with zero downlift
(see figures 10 and 12 respectively). In contrast to the Gini
coefficient, these best potential ranking might be unachiev-
able by any actual model, even with perfect information.

Targeting depth
x

F

0 1

f̄T

f̄C

ū , U(1)

U(x)

FT (x)

FC(x)

Figure 7: Analagously to figure 3, we define cumu-
lative outcome rates FT and FC for the treated and
control populations respectively, with the cumula-
tive uplift U(x) equal to their difference.

Proof.

cov(u, x) =

∫ 1

0

(u− ū)(x− 1
2
)dx (16)

=

∫ 1

0

(
(fT − fC)− (f̄T − f̄C)

)
(x− 1

2
)dx (17)

=

∫ 1

0

(fT − f̄T )(x− 1
2
)dx

−
∫ 1

0

(fC − f̄C)(x− 1
2
)dx (18)

=

(∫ 1

0

FT (x)dx− 1
2
f̄T

)
(19)

−
(∫ 1

0

FC(x)dx− 1
2
f̄C

)
(by (7)) (20)

=

∫ 1

0

U(x)dx− 1
2
ū (21)

Now (21) corresponds exactly to Radcliffe’s definition of Q,
q0 based on the area under the cumulative uplift curve (see
figure 8), less the area under the diagonal: i.e. the average
excess cumulative uplift.

It simply remains to normalize by the covariance for the
“best case” model ordering. Radcliffe argues two different
scenarios, for Q in the binary case and q0 in the general
case.

For Q, we define u∗(x) by assuming the best possible as-
sortment of the binary outcomes, where all positive treated
outcomes occur first, and all positive control outcomes oc-
cur last. This is shown in figures 9 & 10. Of course, it
might be that no model could achieve such an assortment
even with perfect information: for example, no model can
separate duplicate individuals whose outcome is indepen-
dent of treatment. This is in constrast to the traditional
binary outcome model, in which a perfect model is at least
theoretically achievable.

There are various scenarios to consider for the ultimate shape
of u∗(x) (see Radcliffe, 2007 for details), but to illustrate us-
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Figure 8: Radcliffe’s cumulative uplift curve defin-
ing the Qini coefficients simply plots U(x) as a func-
tion of targeting depth. This can be viewed as a
Lorenz curve for the arbitrary real-valued outcome
u(x). The unscaled Qini value is defined as the av-
erage excess cumulative uplift (the shaded area).
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f̄C

f̄T 1− f̄C

FT (x)
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Figure 9: In the binary outcome case, the best
model would rank treated individuals such that
all positive outcomes appeared before any negative
ones, and vice versa for control individuals. Un-
like the traditional model, it might be that no uplift
model could achieve such an ordering even with per-
fect information.

x

U

0 1

ū

f̄T

f̄T 1− f̄C

Figure 10: The best possible cumulative uplift curve
in the binary case, U∗(x) =

∫ x

0
u∗(y)dy, is derived di-

rectly from figure 9. Note that there are several
scenarios defining the extremes of the curve based
on the relative sizes of fT and fC , with the version
shown perhaps the most common.

ing the example sketched in figure 10 (where f̄T < 1 − f̄C
and fT > fC) we have

− cov(u∗, x) = f̄T (1− f̄T )/2 + f̄C(1− f̄C)/2 (22)

Although Q as originally defined does not apply to continu-
ous models, it appears possible to generalize by defining u∗

based on a a Lorenz curve for the observed treated outcomes
(sorted from best to worst) the reverse for the observed con-
trol outcomes (from worst to best). However this still seems
likely to result in a very weak upper bound.

Because a value of Q = 1 is potentially not even theoretically
achievable, and to cope with continuous outcomes, Radcliffe
also defines q0, based on a “best case” model with no nega-
tive uplift (no “downlift”). Here we define u∗0(x) using the
sketches in figures 11 & 12. As for the Gini coefficient, we
distinguish the binary and continuous outcome cases. In the
binary example, we effectively push back the positive control
outcomes as far as possible without creating negative uplift.
There are a family of such scenarios in which fT (x) = 1,

fC(x) = 0 for x <= ū , f̄T − f̄C and fT (x)− fC(x) = ū for
x > ū (see figure 11), all leading to the same u∗0(x) enclosing
area

− cov(u∗0, x) = ū(1− ū)/2 (23)

In the continuous outcome case we allow all uplift to occur
at rank 0, so that the relevant area is simply ū/2.

The equivalence of (20) and (21) suggests that we can avoid
the computational difficulties4 of working directly with U(x),

4Unlike traditional outcome rates, direct estimates of up-
lift rates are formed by subtracting quotients with differ-
ent denominators. This means that uplift values are not
intuitively additive. Even with normal random variations
in treatment rate, different estimates can arise from (say)
forward and backward accumulation. Indeed, if systematic
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Figure 11: Both to cope with continuous outcomes,
and because the optimum model assumed by Q
typically hugely over-estimates what is practically
achievable, the alternative q0 is defined based on the
best potential uplift ranking with no negative uplift.
In the binary case sketched here, this is achieved by
first ranking enough positive treated outcomes and
negative treated outcomes to account for all uplift,
and then balancing treated and control outcomes
equally for the remainder of the curve (in one of a
variety of possible ways). For the continuous case,
we typically allow all uplift to occur at x = 0 with the
outcomes matched thereafter. (Similary to figure 9,
an alternative might be to allow all uplift to occur as
rapidly as supported by the actual outcomes, sorting
treated from best to worst and control from worst
to best.)

x
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ū , f̄T − f̄C

ū

Figure 12: The best potential cumulative uplift
curve with no downlift, U∗0 (x) =

∫ x

0
u∗0(y)dy, as de-

rived from figure 11. The binary case is illustrated,
in which uplift can accumulate at a rate of at most
one unit per individual.

the cumulative uplift (Radcliffe, 2007; TwoCitepRadcliffeS-
urry2011), and instead calculate the Gini-like coefficients
for fT and fC independently (still ordered by uplift score).
These can then be combined to achieve the desired Q or q0

value. For example in the binary case with non-zero uplift,
we can derive:

q0 =
f̄T (1− f̄T )GT − f̄C(1− f̄C)GC

ū(1− ū)
(24)

Figure 7 also suggests a variant of the Kolmogorov-Smirnov
statistic for uplift models. In traditional binary models, the
K-S value is defined as largest difference in cumulative pos-
itive and negative outcome rates maxx F+(x)− F−(x). The
corresponding targeting depth x∗ identifies the cutoff that
minimizes the sum of misclassification errors, 1− F+(x∗) +
F−(x∗).

Analogously, in the uplift case, we can calculate

max
x

FT (x)− FC(x) ≡ max
x

U(x) (25)

which identifies the point of maximum excess cumulative
uplift, the cutoff which minimizes the sum of positive control
outcomes above the cutoff and negative treated outcomes
below it, 1− FT (x∗) + FC(x∗).
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