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Abstract analysed.

The paper begins with a brief but careful review of stand-

The conventional understanding of genetic algorithms de,érd genetic algorithms, re-formulating slightly, making the

pends upon analysis by schemata and the notion of Intrms'&onnection between schemata and the equivalence relations

parallellsm. For this reason, .onkyary string representa- o jnquce them, and introducing slightly unconventional
tions have had any formal basis and non-standard represent-

. otation to facilitate the transition to the more general for-
ations and operators have been regarded largely as heuri

ics. rather than orinciled algorithms. Thi tend ulation given later. This more general formulation in-
' an principied aigo S. 1NIS paper exten %/olvestheintroduction,insectionS,ofgeneralequivalence

gl,i i?;l;felfn ';ot 3222?&&2?5@?;@52?5 mgijligefgj Ig;mgﬁ?ﬁlations, and the' Schema Theprem is expressed in terms
equivalence relations over the space of chromosomes 6 these. In section 4’. interactions bereen the conven-
" tional k-ary representation and conventional operators are
discussed. Schemata are generaliséortoaein section 5,
1 Introduction and “design principles” are suggested for the construction
of useful equivalence relations, chromosomal representa-
Intrinsic parallelismi—the phenomenon whereby eagh  tions and crossover operators. In section 6, standard cross-
gene chromosome is an instanc&’bschemata—has been over operators are analysed in the extended formalism, and
the key theoretical tool for analysing and understanding gedeception is discussed in the context of general represent-
netic algorithms. As conventionally understood, it providesations in section 7. In section 8 the theory is applied to
powerful arguments for using binary genes in order to maxthe problem of real-valued genes. Results of experiments
imise the degree of intrinsic parallelism available. suggested by the theory are also given in the section 8.

Not all problems, however, find natural expression as

binary—or indeedk-ary—strings. Examples in this class 2 Traditional Schemata

include the much-studied Travelling Sales-rep Problem

(TSP) (for example, Goldberg & Lingle [12], Grefenstette To search a spacg with a genetic algorithm, the space is
et al [13] and Whitley [23]), neural network shaping and first mapped by a coding functigninto a space of chro-
training (for example, Harp, Samad & Guha [14], Montanamosomeg’ which the algorithm actually manipulates:

& Davis [16] and Belewet al [3]) and graph optimisation
Norman [17] and Prioet al [18]. Of these, only the TSP
has generated an alternative to standard schema analydideally p should be a bijection. A chromosomg(C is
in the form of Goldberg'®-schemata [8]. Nevertheless, usually taken to be a string of genes(n1, 92, ..., 1)
non-standard operators have been applied to all of thesdrawn from sets of allele$G;, G, ...,G,), so that the
problems. Moreover, there has been much controversgpace of chromosomes is

over genetic algorithms using real-valued genes. Goldberg N

[11] has proposed his theory of virtual alphabets to explain C=G1 x Gy X X Gn.
the behaviour of these under standard crossover, but a mofée conventional understanding of the way in which genetic
general formulation which could take in a broader class Otgdgorithms search depends upon the |mp||c|t introduction
operators would still be valuable. of certain equivalence relations on chromosomes. These
gequivalence relations identify chromosomes which share
me genes. The set of all such equivalence relations for a
romosome with genes can be represented by

p:§—C.

This paper extends the notion of intrinsic parallelism (an
the associated “Schema Theorem”) to general non-strin

representations through the introduction of arbitrary equi-*
valence relations. In doing so it provides a framework SR

within which arbitrary genetic operators can usefully be
wheren is the “don’t care” symbol, which “matches” any

also known as implicit parallelism allele, andm is used to indicate genes which must match
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for equivalence. Taking = 4, a particular equivalence so thatu can be used to yield the utility of either a schema
relation is ther(o, m, O, m), which is conveniently abbre- or a chromosome.
viated toomom. Intuitively, the idea is that two chro- . . . .

. . . - Theintroductionof a few more pieces of notation allows the
mosomes are equivalent under this equivalence relation |-’f- B ., .
statement of the “Schema Theorem”, also sometimes known

they have the same alleles whgrever the definition has thaes the “Fundamental Theorem of Genetic Algorithms”. The
m symbol. More carefully, calling each or m symbol

: . o ; , defining positionsof a schema correspond to tlecharac-
in the string describing an equivalence relatiotoenpon-

. . : . ters in the equivalence relation that induces it, so that the
ent, given any equivalence relatien< ¥, with components i~ o
. defining positions ofioboc are 1, 3 and 5. Therder of a
~1,r~a, ...~y and given chromosomeg(eC

schemagp(¢), is equal to the number of defining positions
n~¢ = (Viel, (~i=m) @9 =), it has, so thab(aoboc) = 3, and thedefining length of a
schemaf(¢), is the maximum distance between any pair of

whereZ,, = {1,2,...,n}. That~ satisfies the conditions defining positions, so thétaoboc) = 5 — 1 = 4.

of symmetry, reflexivity and transitivity, and is therefore an
equivalence relation, follows immediately from this defin- A fixed-size populatiortB(t) of chromosomes is main-
ition and the properties cf. These equivalence relations tained attime-stepy Each member dB(¢+1) is generated
are in one-to-one correspondence with Walsh partitions, aom one or more of the members @ (¢) by the applica-
described in Goldberg [9]. tion of the idealised genetic operators, typically crossover

. . . , and mutation. A selection algorithmis employed to determ-
In praptlce the equwalelnce relations are rarely mtrod.ucegine which chromosomes are to be used as parents. While
explicitly, for the analysis depends only upon the equival-p,ny schemes are in use, the traditional approach is to use
ence classes which they induce. In much the same Wayneqs proportionate reproduction. The probability of pick-

as for the equivalence relations, each equivalence classiﬁgne%(t) as the principdlparent of anyy' e B (t + 1) is
conveniently expressed asehema, a member of the set 41 taken to be:

EEG Gy x - x G, I
9 P(1) = gt ) 1
where  GIf=gG;U{o}. 1B ()| a(t)
For exampleé = aboo - - -0 is the equivalence class of where (1) = Z (<)
all those chromosomegwhich haven;, = « andrns = b. B
Formally, Finally, assume that there is a $etof operators and that
nee (VieZn (& #0): p= &) . we€f is applied with (independent) probabiljty,. Then let

pg be the probability that a schengawill be disrupted by
Plainly every chromosome is a member {ostance) of  the application of this operator. That is, given an operator
precisely2” schemata. (This can be seen by noting that re-
placing any subset of a chromosome’s genes bgnerates

a schema which contains that chromosome, and that theg¢ is the probability thaf does not contain the child whose

w:C—2C,

are2” such subsets.) parent it does contain:
Let the utility function which the genetic algorithm uses to p£ a Plw(n) § ¢ | nee). (2)

guide its search be. This associates with each chromo-

some a positive, real measure of its performance: The Schema Theorem then bounds the expected number

u:C — RT. of instancesVe (¢t + 1) of each schemé in the population
B(t + 1) by
It is useful to construct frona a measure
g (T
ji=—RY (w4 1)) 2 veo ) [1—prpi], 3)
wWEN

which gives the utility of a schema as the average utility of . , .
all its members: wherefi (t) is the sample average for utility éfover all

chromosomes in the populati®B(¢) which it contains. It
p(€) 2 - Z u(n), is, in fact, extremely easy both to prove this theorem and to
€] nee fill in bounds forp¢ for the standard operators. The only
subtlety concerns the treatment of recombination operators

where|¢] is the size of the equivalence classNoting that which introduce extra parents.

C C &, itis then immediately apparent that

2 The crossover operator takes two parents, and the second is also usually selected
ﬂ| =u, with the probability given.
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Assume initially that the operators are all unary (asexualpf the equivalence classes (schemata) can the information
so that every child has precisely one parent. Then theollected in the population accurately guide the further ex-
term outside the brackets follows directly from selectionploration of the space. This critical point is discussed in
of the parent on the basis of fithess (equation (1)), and thgreater detail in Radcliffe [19].
bracketed term reduces the bound to take account of thefaﬁ:hiS observation su _

ggests that any representation is useful

that each operator, when applied, can destroy memberSht'PnIy insofar as correlations between different portions of

of the schema. (The second term in the bracket is called ti}ﬁ :
: X e search space can be expressed in terms of schemata. Of

disruptionrate.) ) . .

course, there is freedom to analyse the algorithmin any way
When treating binary (sexual) operatgfs must be inter-  desired, through the introduction of such equivalence rela-
preted as the probability that destroys membership of a tions and classes as may be useful, and the objective of this
schema given the probability distribution used to select thevork is to suggest a framework within which non-standard
other parent. equivalence relations and equivalence classes may be ex-
Ploited. The careful formulation of the schema theorem in

For example, using the conventional one-point CroSSOVely yuation (3)is equally valid § is interpreted as an arbitrar
if both parents are selected according to equation (1) thef quaty P y

the probability of disrupting a schengais bounded above subset o provided only that the cqefﬂmen[nﬁ are cal- .

o i culated correctly according to equation (2). In particular, it
by the probability that the cross point falls between thea lies to an arbitrary equivalence classiof equivalence
outer-most defining positions. To see this, it is sufficient bp yed q

to note that picking both parents in this way results in arelat|pn~ onC (or equivalently, given a bijective coding
: . function, on the real search spaggA general method for

doubling of the expected number of offspring from eachboundin these coefficients is now discussed

schemat@Ng ()i, (t)/a(t) and that if the cross point falls 9 ’

outside the defining region one of the two possible childrerA fairly general recombination operatdf has the func-

is guaranteed to instantiate the given schema. Assuminigpnal form

thatthegcross pointis chosen uniformly along the length, this X:CxCxAx — C,
givespy = £(£)/(n — 1), where the subscript’ denotes  \yhere Ay is a set ofcontrol parameters that determine
Crossover. which of the typically many possible crosses between two

Similarly, the probability of “losing” at least one defin- chromosomes occurs. For example, inthe case of one-point
ing position as a result of mutation is bounded above bycrossover (Holland [15])dx = Z,_1, the set of possible
pmo(€), Wherep,, is the point mutation rate. Substitution Cross points. Both two-point crossover (De Jong [5]) and
in equation (2) restores the familiar form of the Fundamentaf@oldberg’s partially-mapped crossover (PMX [12]) use the

Theorem: control setd x = Zi_l, the set of all pairs of cross points,
e () 63 while uniform crossover (for example, Syswerda [22]) has
<N§(t + 1)> 2 Nf(t)m [ —PX T pmo(€)| . Ax = {0,1}", the set of alln-bit binary masks. In the

] case of a few crossover operators (such as the Grefenstette’s
Holland [15], assuming that only one of the parents was.gristic” Crossover [13]) the control set—if it is mean-

chosen on the basis of fithess, showed a slightly differenfngfm to talk of one at all—depends upon the two chro-

result. mosomes being crossed, but such operators are beyond the
scope of this paper.

3 From Schematato Equivalence Given this structure, an often useful upper bound on the

coefficienty®, of equation (2), withv = X, can be calcu-
Schemata, fundamental as they have been to understar]é% (& a @)

. : : : ed as follows. Let
ing genetic algorithms, are merely a mathematical tool for .
analysing and designing their behaviour. The population A% £{acAx | Vneg ¥(eC = X(n,{, a)eé },

of a genetic algorithm consists of individual chromosomesthe set of parameter settings for which membership isf

and it is the utility of these which is actually measured. passed to the child from the principal pares)t tegardless
Holland observed that each evaluation of a chromosomgf the partnerd) chosen. Themi can be bounded by

can be regarded as a statistical sampling event which yields
information about the sample averages for utilityeath ¢ ¢ |A§(|
of the 2" schemata of which it is an instance, the phe- px < {1-w Ax| |
nomenon referred to as intrinsic parallelism. The signific-

ance, however, of the hat in equation (3), indicating thewherew?® is a weight to take account of the possibility that
observed utility /i () of a schema, rather than its true fit- control parameters from x are not all selected with equal
nessy,, cannot be overstated: only provided that there argrobability. In most cases (including all the crossover op-
correlations between the performance of different membersrators listed above) the choice is conventionally unbiased

(4)



so thatw® = 1. This bound is, in effect, the one used by by seeking to reduce the defining length and order of good
Holland to derive the Schema Theorem, and is typicallyschemata it attempts to minimise the likelihood of disrup-
used in deriving variations for other operators. tion by the genetic operators. Finally, it tries to ensure that
- . recombination of (instances of) different schemata works
A similar approach can be taken for mutation operators, .
i . : . ._in a useful manner. The second principle attempts to max-
Conventional point mutation can be viewed as a collection _ . L . i

of n ODErators imise the degree of intrinsic parallelism available to the
" op algorithm by ensuring that each chromosome is an instance

M;:CxA —C of many schemata.

with A; = G;, the allele sets. Then

Mi(mnz...0n, @) = M2 ... i—1A041 - - - T 5 Formae
The coe1‘ficient392§ are then given by
0 if & = o The above considerations (and others) lead to the follow-
p; = { (I’Gil ~ 1164 othlerwis,e. ing proposals for constructing useful equivalence relations,
i ’ o good representations and suitable sets of operators. These
If each gene is drawn from a setbtlleles this yields principles are not all necessary for an effective genetic al-
N k—1 gorithm, and are certainly not sufficient for it, but might
Zpi =o(¢) <—k ‘ be expected to characterise good representations. To em-
i=1

phasize the link between these equivalence classes and
. schemata, the former will be referred to fasmae, and
4 Representations the number of formae induced by an equivalence relation
will be referred to as therecision of the relation and the
There is little theory surrounding good representations fogrmae itinduceé. From this pointonz will be interpreted

genetic algorithms. Holland [15] suggested subjecting theys the set of all formae induced by the equivalence relations
representation itself to adaptation, but the author is awarg,

of no implementation in which this approach is adop- ) ] I
ted outside the domain of classifier systems. The ArgofWo formae¢ and¢’ will be said to becompatible if it is
Strategy (Shaefer [20]) does alter the representation durin /0555|ble fqr a chromoson)e to be an instance of E‘th
the course of the search, but not in the manner sugge$--~ Denoting this by, o« £, a more careful statement is
ted by Holland, nor in a way which is amenable to this Exé = ENE4Q .

analysis. Walsh function analysis is also sometimes used

for post-mortem analysis of why a genetic algorithm fails g 1 Design Principles

(Goldberg, [10]). Goldberg [8], however, suggested the

following two principles for good representations:

1. (Minimal redundancyYhe representation should have
minimal redundancy; such redundancy as exists should be
capable of being expressed in terms of the equivalence re-
lations used.

Ideally, each member of should be represented by only
one chromosome id. This is highly desirable in order to

The Principle of Meaningful Building Blocks:

The user should select a [representation] so that
short, low-order schemata are relevant to the
underlying problem and relatively unrelated to
schemata over other [defining] positions.

The Principle of Minimal Alphabets: minimise the size of the search space. If redundant solu-
The user should select the smallest alphabet that  tions are present, but are related by one of the equivalence
permits a natural expression of the problem. relations used, then the genetic algorithm should effectively

be able to “fold out” the redundancy (see principle 4); other-

The analysis presented here focuse; on the intergcticwise itis doomed to treat redundant solutions as unrelated.
between the chromosomal representatsome set of equi-

valence relation¥ over the chromosomes, and the genetic

operators used. Goldberg’s principles are formulated witt2. (Correlation within formaepome of the equivalence re-
respect to conventional chromosomal representations ( lations, including some of low precision, must relate chro-
tuples of genes drawn from sets of alleles) analysed wittnosomes with correlated performance.

conventional schemata.

3 Although Holland chose the neuter form for the Latin noun schema, there is no

i . . . . . . tion but to choose the feminine form of its synonym, forma.
His first principle requires three things. First, it emphasizes °°
stirst principie requires three gs ! P 3 In the case of schemata and genes Withlleles, the precision i °, whereo is

the point made in the previous section, that as many equi- e order of a schema.
valence classes (schemata) as possible should contain Chrorhe term “competitive schemata” has sometimes been used to describe those which
mosomes which have correlated performance. Secondly,herewould be called incompatible.



This ensures that useful information can be gathered aboytrroper assortment requires crossover to be capable of mix-
the performance of a forma by sampling its instances. Sucimg compatible properties from the two parents.
information is used to guide the search. The emphasis is

placed on low-precision formae because these will gen- - : -
erally be less likely to be disrupted by the application of6' (Ergodicity)It should be possible, through a finite se-

. ; . quence of applications of the genetic operators, to access
\?v?t%e;ﬁeogﬁg?ﬁgrs’ and are also more likely to be COmpa“blegmy pointin the search space § given any population*B (¢).

This provides theaison d' &tre for the mutation operator.

3. (Closure)The intersection of any pair of compatible
formae should itself be a forma.

This ensures that solutions can be specified with different

degrees of accuracy and allows the search gradually to d&is in§tructive tq examine the way standard crossover oper-
refined. Clearly the precision of formae so-constructed will21°"S Interact with schemata (the "standard” formae) to see

be at least as high as the that of the higher-precision of th)ﬂlhet.he,r they respect and properly assort them in t.he SENse
intersecting formae. of principles 4 and 5. The crossover operators which have

traditionally been used are 1- and 2-point crossover. More
recently, attention has focused on multi-pointcrossover and
4. (RespectLrossing two instances of any forma should  the so-called “uniform” crossover operator. Eshelragai

6 Crossover and Formae

produce another instance of that forma. [7] have also discussed “shuffle” crossover operators. Re-
Formally, it should be the case that call that uniform crossover makes an independent random
VEEE Vnee VieE Vae Ax : X(n,C, a)€, choice as to which of the parents the allele at each locus is

drawn from, and shuffle crossover shuffles the (effective)
where X is the crossover operator. In this case the crosserder of the genes before crossing over, removing “posi-
over operator will be said teespect the equivalence rela- tional” bias in the sense of Eshelmetnal [7]. All of these
tions (and their formae). This is necessary in order thabperators respect schemata, for it is plain that under all of
the algorithm can converge on good formae, and impliesthem a child will be an instance of any schema containing
for example, thatX (7, 7,a) = 7 (assuming that equival- both its parents. Only the uniform and shuffle crossover
ence relations of maximum precision specify chromosomesperators, however, properly assort schemata.
completely). It also effectively reduces the disruption rate . .
in the Schema Theorem, though a more accurate value leo see this, consider the chrompsomes and ;chemata
p?x than that given in equation (4) is needed in order to segVl0€lolo and 0101.65151' . Plainly the two given
this. Informally, respect requires that any properties WhichSChem""t"’1 are compatible, with intersectiofl, but ne|ther
parents share, and which are capable of expressionin ternJTé nor 2-point crossover can cross them to. produicd in
of the formae, be passed on to all their children. a'smglle step. It s'hould be clear .that thls kind of prob!em

will arise for n-point crossover with anfixed »n. Both uni-

form and shuffle crossovers, however, can recombine the
5. (Proper assortmen®iven instances of two compatible  two chromosomes as required (albeit with low probability)

formae, it should be possible to cross them to produce a  and itshould be apparent that they always respect schemata.
child which is an instance of both formae.

Formally,

VEeE VE €Z (Ea ) Vnee Vn'ed Jac Ax -

X(n,n',a)eEne’. (5)  Deception, like most work on genetic algorithms, has
only hitherto been considered in the context of classical
schemata, and has been rigourously defined by Goldberg
[10]. If, however, more general formae are considered,
‘Effective processing by genetic algorithms oc- then it becomes necessary tq consider deception in terms of
the formae under consideration.

7 Deception

This relates to Goldberg’s “meaningful building blocks”, of
which he writes ([8], p. 373)

curs when building blocks—relatively short,
low order schemata with above average fitness 8 Of course, Holland [15] advocated using inversion with one-point crossover. The

values—combineto form optima or near-optima_’ aim of this was to bring co-adapted sets of alleles closer together on the chromo-
some, and in these circumstances properassortmentis probablynotrelevant. Since
. . inversion is rarely used, however, this case is not considered in detail here. For a
A crossover operator which obeys equation (5) Seems Very discussions of inversion see Holland[15], Goldberg [8] and Radcliffe [19]. The fact

much more |ike|y to be able to recombine “building blocks” thatuniform crossover is more disruptive to short schemata of a given order than
. . . is one-point crossover becomes a consideration only if the layout of the genes on
usefu”y, and any crossover operator which obeys this Prin- the chromosomeis believed to reflect the degree of linkage between the properties

ciple will be saidproperly to assort formae. Informally, they code accurately.




Recall that, classically, a function-coding combination isexactly equivalent to choosing a (unique) random chro-
said to bepartially deceptive if some low-order schemata mosome fronC to represent each structure $h Under

lead away from the optimum, and figlly deceptive if all these circumstances it should be clear that gathering in-
lower-order schemata lead away from the optimum. Thidormation about the performance afy subset of the chro-
indicates that defining positions on a schema which arenosomes provideso information about the performance
“wrong” (carry a different allele from the optimal chromo- of the remaining structures—those represented by the un-
some at that locus) lead to higher utilities for the schema. tested chromosomes. Nevertheless, the Schema Theorem
(equation (3)) will be obeyed for very one of therepres-

This definition cannot immediately be carried over to the !
Entatlons.

case of general formae because it is not meaningful to tal
of ‘genes’, ‘defining positions’ and so forth for an arbitrary In such circumstances, the search could not be effective
forma. The following definitions, however, seem to captureexcept by chance simply because almost none of schemata
the spirit of deception, which in the context of formae will would relate chromosomes with correlated performance.
be termed-deception. Assume that there is a unique globaln other words, schemata are not useful formae in this con-

optimum represented by eC, i.e. text. (Holland's observations ([15], p. 142) about “enriched
. « schemata” appear initially to refute this claim, but on closer
Ve CA L} s pln) < ). analysis do not. Thisis discussed in detail in Radcliffe [19]
Let the formae induced by any relatiere ¥ of precisionk (pp.17-18, Compressed Edition).)
bec) @) .. ¢¥-1 ¢* wheregte¢s. Then arepres-

In effect the results and arguments presented thus far in
this paper can be seen as a critique of the idea that there is
) (3) * a single, all-embracing representation and set of operators
Ar~ew: maxp (€N ) > HEL), which can reasonably be expected to tackle all or most
In other words, a representation is partialleceptive search problems effectively. The focus here is on finding
(with respect to the equivalence relationdipif the global ~ sets of formae which characterise the regularities in the
optimum is not in the equivalence class (forma) of highesfparticular problem or class of problems under consideration
utility for all of the equivalence relations. and developing operators which manipulate these to good
effect. Thus, for example, rather than seeing a function-

In the same spirit, le¥™ be the set of equivalence relations representation pair as deceptive, deceptiofideception)
of precision lower than the size of the search space (i.e P P PUVE, b P

those relations which do not induce only sin Ietonformae)l.s seen as characterising a mis-match between the set of
. ) ysing ) formae used (together with the operators used to manipulate
Full f-deception can then be defined as follows:

them) and the regularities in the space being searched.

Ve max g (5(3) > u(EL). To explore these ideas further, the next sections discuss
eneral binary representations for real-valued problems and
wo types of regularities which it might be desirable to
develop formae to characterise. The ideas are made more
concrete by applying them to a familiar set of functions.

entation will be said to bpartially f-deceptive with respect
to W if

This says that for every low-precision equivalence relatio
the optimumy* falls outside the equivalence class of top
utility.

8 Real-Valued Problems 8.1 Binary Representations

gonventll((lnnjll W!SdolT holds that real-\{alue(; problemi'ar he great strength of binary representations lies in their
: est tahc €d using llnaryl refpr'esgntf';\tlons llefause t l:l)s ersatility: different schemata relate chromosomes on quite
ows the maximum level of intrinsic parallelism t0 be qigereni'hases. Indeed, their robustness is demonstrated

achieved. (Recall that each chromosome is an instanc& the wide variety of problems which have been tackled

of 2 schemata, and ‘ha.“s.m"’!x'm'sed for pmary genes.) successfully using binary representations. For example,
In practice, however, this intrinsic parallelism can be ex-

; . . onsider the natural coding for a real number in the range
ploited only when schemata relate solutions with correlatet{

) o . . «, 3], with N divisions,
performance. To emphasize this critical point, notice tha

if the size of the search spackis s, there ares! possible r—a+é
bijective coding functions plx) = |N f—a
p:S§—C,

whereé = 1/2N. The schemdoo - - -0 then specifies
almost all of which effectively destroy patterns over thethe upper half-space > (« + 3)/2, whereas the schema
search space. To see this, imagine randomly selectingo - - - ol specifies alternate strips of wid# across the
a mapping from these! choices, and notice that this is space, capturing some possible periodicities.



The problem lies in the fact that the schemata are far fronfThe “don’t care” character is strictly redundant, but is left
uniform over the space. Suppose that 0 andg = 1.5  in for notational convenience.) This induces formae which
with 16 divisions. Thenp(0) = 0000, p(0.7) = 0111,  can be described using exactly the same set asifor
p(.8) = 1000 andp(1.5) = 1111. Itis possible to specify namely
the interval[0.8, 1.5] exactly using the low-order schema L TT o
looo, whereas there is no schema afy order which - HIZ' :
specifies any range which crosses the “Hamming Cliff” . =l .
betweer).7 and0.8. Caruna & Shaffer [4] advocate using 1NUS @ typical forma with » = 3 can be written as
Gray coding to avoid this (and other) problems, but thel B[0-2,0.1),8, B[0.5,0.2)), with the interpretation that
interpretation of schemata is then even less obvious, an@l Cromosome; is an instance of if 0.1 <, < 0.3 and
serious problems with such schemes have been pointed or® < 73 < 0.7. Formally,

by Goldberg [11]. Nor is locality the only problem: while neé <= (Viel, (& #D): mi€d).

some periodicities of powers of two in the discretisation . )

size are easily characterised using schemata, periodicitidlshese equivalence relations are to be used, then a cross-
of three, for example, are incapable of being so represente@Yer operator should be constructeq which both respects and
The problem seems to lie in the fact that relatively few ofProperly assorts the formae they induce. Standard cross-
the schemata seem to be induced by equivalence relatioR¥er with real genes would respect them, but would fail

which group together “useful” sets of points. properly to assort them. An example should make this
clear. The sub-formdeB[0.4,0.2) and B[0.6,0.2) are

Whether more useful equivalence relations can be desompatible with intersectio[0.5,0.1), but given genes

veloped depends very much on how much insight can b@.3€B[0.4, 0.2) and 0.7€ B[0.6,0.2) it is impossible for

gained into likely kinds of structure in the problem. For standard crossover to generate any value3[A.5,0.1)

function optimisation overintervalsi”, locality and peri-  sjnce the result of such a cross will always eitherOise

odicity seem like obvious—though not universal—starting or 0.7. The presence of Hamming cliffs also makes it im-

points. mediately clear that standard crossover with binary genes
will not respect these formae.

[1]

8.2 Localit . .

y A more suitable crossover operator is:
Simplifying to functions of one real variable&S(C R), xFiexex[0,1) —¢
suitable equivalence relations for capturing locality are in- ith P B i
tervals specified by a position and a radius. Bét, ) be with X7 (1,¢,r) = ri|ln — ¢| + min{ 5, },

the half-open intervat — r < = < ¢+ r, r€R™, and let  which will be calledflat crossovet (see figure 1). Given
Ble,0) = {c}. Then the equivalence relation specified bya pair of real-valued genes, this operator returns a random

positionp and radius- is value within the interval between them. The choice is
iform provided that each; is chosen uniformly. (The
~ (¢ == (keZ: n,CeBp+ 2%, uni , i _ :
N6 ( n CeBlp+ 2kr r)) control set here isdp = [0,1]".) Plainly this operator
with formae respects formae frori”, for if the two genes have the

B 2% vel same value then the interval they define has zero width.
(Bl + 2krm) | b Moreover, compatible formag and ¢’ have overlapping
Thus any intervala’, ') is an equivalence class under intervals at each locus. Givere¢ andn’e¢’, itis clearly
some equivalence relation. possible to choose a set of such that each gene of the

_ . child sits within the intersectioin &’.
Moving back to the more general problem of searching a

spaceS which hasn real-valued parameters, Thus X” respects and properly assorts formae fréfn
" composed of intervals of arbitrary widths in the search space
S = HL' S. A genetic algorithm using this might be expected to
el ’ perform well on a real-valued problem for which locality

the appropriate kind of equivalence to impose on solutions,
utilising the intrinsic parallelism which derives from each
a suitable set of “locality” equivalence relatioi$ can be  chromosome’s being an instance of many locality formae.
defined as

where  7; = [a;, 3] C R,

Two related problems, however, remain. The first is the
. ﬁf* guestion of a suitable mutation operator. The second prob-
=1

7 defined on a single gene

8 affectionately known as “top hat”

where 77 =17 U{o}.
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Figure 1: The graph on the left shows the probability dis- . rea ofine
tribution function for the one-dimensional flat crossover
operator “top-hat” when crossingand¢. The graph on
the right shows the corresponding distribution function for
traditional crossover with real genes and uniform crossover

with real genes. The distribution function for traditional "0 500 1000 1500 2000 2500 3000 3500 4000

crossover with binary genes looks very different according Evaluations

to the chromosomes being crossed. For example, using

4-bit binary coding on the range [0,15], 7 (=0111B) and

8 (=1000B) can cross to produeay child under uniform

crossover, whereas 0 (=0000B) and 8 (=1000B) can onlfrigure 2: De Jong's;. The “real” traces use the “flat”

produce copies of themselves. crossover operator, which chooses a random value in the
range bounded by the parents’ genes. The binary trace is

lem concerns a bias in the operator, namely that |tsystemaE- e same algorithm using binary uniform crossover

ically biases the search away from the ends of the intervals,

violating ergodicity in the sense of principle 6. fn. dim spacesize description

Recall that thedle of mutation fork-ary string represent- fi 3 1.0x10° parabola

ations is usually understood to be that of keeping the gene /2 2 1.7x10° Rosenbrock’s Saddle
pool well-stocked, the fear being that if an allele for some f3 5 1.0 x 10" step function

gene is not present in any member of the population, cross-  f4 30 1.0 x107® noisy quadratic

over will never be able to generate it and will thus not have f5 2 1.7x10' Shekels foxholes
access to the entire search space. This observation, which £, 2 1.7%x 10" Random foxholes

motivated the principle of ergodicity, suggests that the two
problems mentioned can be tackled together by defining g,pie 1: De Jong’s test suite of functiofis-fs, augmented
mutation operator which only inserts extremal values intoby random foxholes.

the gene pool, thus countering the bias\of. As before,

givenn genes per chromosome (now real-valued), a set of

n point mutation operators are defined according to ably be expected ofi, f» and fs, which are (essentially)
Mz'R Cx{ag, 0} —C, smooth, whereas very poor performanpe would be expec-
) R ted onfs;. Reasonable performance might also be anticip-
with M (i -y @) = 02 -0 1 @i - D ated onfs, which while not smooth, is reasonably local in
The difference between this and standard mutation is thatature. The results for off-line and best-seen performance
instead of using the interv@d;, 5;] as the control setl;, are shown in figures 2—7. An extra functigfy,is also in-

only the end-points;; andj3; are now used. If both parents cluded, which is a variation on Shekel’s foxholes in which
are selected according to fitness, such mutations should like positions of the foxholes are random, rather than in a
appliedbefore crossing over, in order to reduce the prob- regular grid.

ability of generating a child of very low fitness which then

fails to reproduce. A comparison is shown between the same genetic algorithm
Sl{sing both binary and real representations, with parameters

As an illustration of these ideas, De Jong’s standard tedselected to give good performance with binary represent-
suite of functions ([6]) were examined using both a standar Ltions. Following Shaffeet al [21], the point mutation

binary representation with uniform crossover, and a real-rate was made inverselv proportional to the chromosome
valued representation using flat crossover as defined above. y brop

Folowing Eshelmart o (1] he nctons are descbed (10, s 1 OV WA g s epreserte
here only summarily in table 1. g Y barts.

Baker’s Stochastic Universal Sampling procedure [2] and
Of the five functions, good performance might reason-rank-based selection, broaddyla Baker [1] were used.
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50.01 Figure 8: Four “locality” formae. Each numberis the centre
i of a half-open interval of width hals = & Né; andé, is
40.0] compatible with botlf; and¢,.
« binary, best
30.0j' = binary, offline
. o real, best general periodicities is not difficult: suitable relations are
o s real, offline specified by a positiop, a radiug- (to allow for fuzziness)
200, and a period/” which is an integral multiple of. Given
s these, and again simplifying to functions of one real vari-
10.0(, able, two chromosomes are equivalentifthey lie inintervals
of radiusr centred about points separated by a multiple of
0.0 the periodi’. Formally,
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Evaluations 77,\,77’ — (3]9’]9/62: ne€Blp+ kT, r)

andn'€ B[p + k'T, r)) ,
Figure 7: Results fofs: randomly-placed foxholes

These equivalence relations are extremely flexible, subsum-
Flat cross-over and extremal mutations, as described aboved the previous “locality” relations immediately by setting

: 7't0 zero. If a crossover operator could be constructed
were used for the real-valued case, and uniform crossover

. : which both respected and properly assorted these relations
was used for the binary trials. The results are all averages . .
over 100 runs it might be expected that an extremely powerful algorithm

for real-valued problems would result.
As predicted, flat-crossover with real genes performs eX'Sadly, no such operator exists. To see this, consider the
tremely well on the smootlfi;, f» and f., out-performing formae, to £, in figure 8, each with radius = 0.5:
binary representations. Qf, although less effective than LH5e 9 ' T
the binary case, the global optimum is still consistentlyThe numbers above indicate the centres of the intervals
found in reasonable time. which the formae comprise, so thggtconsists ofB[0, 0.5)

and B[20,0.5). Notice thatés = &3 Né; # @ so that

The results for Shekel’s foxholes are rather more surprisingé > £. Consider chromosomases, Né, andaeg, Né
With the standard foxhole configuration, (a five-by-five grid Ifla crgésover operatok” is to respécE:then it mzust4b.e

with spacing 16) the binary representation appears SUpefﬁe case that for alie Ap: X (4,10, a)ecy; that is, all

ior, thoughthe real representation perfor'ms amazingly we:?Ossible children oft and 10 must be members d,. If
considering that the crossover operator it uses was only de:-

) . . . it is to assortt; and¢, properly then there must be some
signed to respedbcality formae, which have no obvious . p o
relevance to this problem. Notice, however, that pointsa EA.P for which X'(4, 10, ") €&, N &, that s, it must b.e
differing by 16.384 are very close in Hamming Distance.pOSSIb.Ie to cross and10to produce a chromosqme which
under the binary representation, making it easy to hop fron:]flc?)?nIn;zzgcehSLSSQ?lbizgfgém-Igjhfwsg C_O(ﬂDdltIOHS are
one foxhole to another. For this reason, a second set of tri- P ' ' thisz =¥

als was performed using fox-hole coordinates each chosdhshould be emphasized that this is not a failure of the forma
at random. In this case, the real representation using flanalysis, which has simply revealed that general periodicit-
crossover gives slightly superior performance to the binaryes are extremely hard for a genetic algorithm to be sensit-

representation. ive to. It has been demonstrated that no crossover operator
can both fully respect and properly assort the forreae
8.3 Periodicity induced byW”, but it is quite possible for an operator par-

tially to respect and assort them. Indeed, uniform crossover
Dealing with general periodicities, unsurprisingly, is harder.does this. Whether an operator can be constructed which
Constructing equivalence relatiohid’ capable of capturing  better respects and/or assatfs remains an open question.

10



9 Conclusion

Intrinsic parallelism, the key concept under-pinning genetic 5]
search, has been shown not to be restricteelaoy string

representations.

Given a suitable set of equivalence re-

lations and a crossover operator which both respects an

properly assorts its equivalence classes (formae) without
excessive disruption, any genetic algorithm will exhibit

6]

intrinsic parallelism. These ideas have been applied to
standard crossover operators to provide another insight into[7]
the sometimes-claimed superiority of the uniform cross-
over operator over traditional 1- and 2-point crossover, and

to apply genetic algorithms more effectively to some real-
valued problems. They could equally well be applied to
other problems for whiclk-ary string representations and 8

schemata are not obviously appropriate. Such areas include
neural networks, the TSP and graph optimisation.
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