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Abstract. A formal, representation-independent form of a memetic algorithm—
a genetic algorithm incorporating local search—is introduced. A generalised form
ofN -point crossover is defined together with representation-independent patching
and hill-climbing operators. The resulting formal algorithm is then constructed
and tested empirically on the travelling sales-rep problem. Whereas the genetic
algorithms tested were unable to make good progress on the problems studied,
the memetic algorithms performed very well.

1 Motivation

The r̂ole of local search in the context of genetic algorithms and the wider field of evol-
utionary computing has been much discussed. The traditional view, which can be traced
back to Holland (1975), has been that the primary search operator in evolutionary com-
puting should be recombination. In its most extreme form, this view casts mutation and
other local operators as mere adjuncts to recombination, playing auxiliary (if important)
rôles such as keeping the gene pool well stocked and helping to tune final solutions.
There have, however, long been advocates of a greater rôle for mutation, hill-climbing
and local refinement. The arguments for serious consideration of operators other than re-
combination for primary search come in many forms and are inspired by widely differing
applications. For example, Davis (1991) advocateshybridisationof genetic algorithms
with domain-specific techniques for “real world” optimisation, by incorporating extra
move operators. He regularly uses sophisticated decoders that make use, for example,
of greedy algorithms and repair mechanisms. Ackley (1987) recommendsgenetic hill-
climbing, in which crossover plays a rather less dominant rôle. Muehlenbein (1992)
argues theoretically and Gorges-Schleuter (1989) provides empirical demonstrations
that local search can play a key rôle, and Muehlenbein (1989) incorporates it as a
fundamental component of his particular notion of a parallel genetic algorithm with
a structured population. Meanwhile, theEvolution Strategiescommunity has always
placed more emphasis on mutation than crossover (Baecket al.,1991). Countless other
advocates of a greater emphasis on non-recombinative elements of evolutionary search
could be cited, especially from the ranks of those competing with domain-specific
techniques.

Moscato & Norman (1992) have introduced the termmemetic algorithmto describe
evolutionary algorithms in which local search plays a significant part. This term is mo-
tivated by Richard Dawkins’s notion of amemeas a unit of information that reproduces
itself as people exchange ideas (Dawkins, 1976). A key difference exists between genes



and memes: before a meme is passed on, it is typically adapted by the person who
transmits it as that person thinks, understands and processes the meme, whereas genes
get passed on whole. Moscato and Norman liken this thinking to local refinement, and
therefore promote the term “memetic algorithm” to describe genetic algorithms that use
local search heavily.

The purpose of this paper is three-fold. The first aim is to formalise Norman and
Moscato’s memetic algorithms and to provide a unified framework for considering
both memetic and genetic algorithms. The second aim is to use forma analysis (Rad-
cliffe, 1991; 1994a) to devise further representation-independent operators to augment
those previously developed in Radcliffe (1991, 1994a and 1994b). In particular, a gener-
alised form ofN -point crossover (GNX) will be defined, as will a general hill-climbing
operator. This will allow the construction of a representation-independent (formal)
memetic algorithm. The third aim is to investigate the application of the ideas developed
to the travelling sales-rep problem (TSP) to test their efficacy.

2 Memetic Algorithms

The first task in this work is to provide a homogeneous formal framework for considering
memetic and genetic algorithms. Informally, the idea exploited to achieve this is that if a
(true) local optimiser is added to a genetic algorithm, and applied to every child before it
is inserted into the population(including the initialpopulation) then a memetic algorithm
can be thought of simply as a special kind of “genetic” search over the subspace of local
optima (figure 1). Recombination and mutation will usually produce solutions that are
outside this space of local optima (and can thus be regarded as “damaged”) but a local
optimiser can then “repair” such solutions to produce final children that lie within
this subspace, yielding a memetic algorithm. Section 2.1 formalises these notions and
section 2.2 discusses when such memetic search might be more appropriate than genetic
search.
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Fig. 1. Memetic algorithms search over the subspaceof local optima within the embedding search
space of all solutions. After recombination, the proto-child typically lies outside this subspace
and a local optimiser is used to “repair” the child so that it lies at a local optimum. Here parents
X andY produce the proto-childZ �, which is then optimised to produce the final childZ.



2.1 Formal Memetic Algorithms

Consider a search spaceS (of phenotypes) and a representation spaceC (of genotypes).
Let

� � S �� C (1)

be the representation function which, given any solution inS, returns the chromosome
in C that represents it. It will be assumed throughout this paper that� is injective (so that
every solutions � S has a well-defined, unique chromosome��s� � C to represent it)
but not that it is surjective, (so there may be chromosomes inC that do not correspond
to any solution inS). Let f be the fitness function, which it will be convenient to regard
as a mapping

f � C �� R
�
� (2)

It will be assumed that the aim is to maximise fitness, and the set of global optima will
be denotedC� � C.

Let Q be a stochastic unary move operator overC. It will be convenient for the
moment to accommodate the stochastic element of such an operator through acontrol
set,KQ, from which acontrol parameterwill be drawn to determine which of the
(typically many) possible moves actually occurs. For example, in the case of mutation
of binary strings, a binary mask might be used as the control parameter with the presence
of a� at positioni indicating that theith bit should be mutated. The functional form for
Q will then be

Q � S � KQ �� S� (3)

A chromosomex � C will be said to belocally optimal with respect toQ, orQ-opt, if
no chromosome of higher fitness thanx can be generated from it by a single application
ofQ, i.e. if and only if

�� � KQ � f�Q�x� ��� � f�x�� (4)

Let CQ � C be the set ofQ-opt chromosomes inC, i.e.

CQ
�

�
�
x � C

�� x isQ-opt
�
� (5)

A genetic algorithm applied to the task of optimisingf over C has some goal
such as finding some or all optima inC� or making rapid improvements towards fitter
chromosomes. It is clear that for any move operatorQ, all chromosomes inC� are
Q-opt, and thusC� � CQ. It would be perfectly satisfactory, therefore, to formulate the
search instead overCQ.

Given a representation spaceC, a move operatorQ, and the subspaceCQ of local
optima as above, define ahill-climber to be any stochastic, parameterised operator that,
given a chromosomex � C, returns a local optimum inCQ. Thus a hill-climberH with
control setKH is any function

H � C � KH �� CQ� (6)

Notice that there is no requirement that the solution returned be in any sense “near” the
starting solution, though of course this will often be the case in practice.



Typical genetic algorithms produce new chromosomes by recombination of two
parents followed by some small level of mutation, so that if

X � C � C �KX �� C (7)

is the recombination operator (with control setKX ), and

M � C � KM �� C (8)

is the mutation operator (with control setKM), the combined genetic reproductive
functionRg would typically be given by the composition of mutation and recombination,
Rg �M�X , yielding

Rg � C � C � KM �KX �� C� (9)

defined by

Rg�x� y� �M� �X �
�

�M�X �x� y� �X �� �M�� (10)

If, however,Rg is further composed with a hill-climberH (with respect to some unary
move operatorQ), and restricted toCQ, a memetic reproduction functionRm

�

�H �
M�X results:

Rm � CQ � CQ �KH � KM �KX �� CQ� (11)

defined by

Rm�x� y� �H� �M� �X �
�

�H�M�X �x� y� �X �� �M�� �H�� (12)

2.2 Decomposable Fitness Functions

While the general question of when it might be appropriate to use a memetic algorithm in
preference to a genetic algorithm is beyond the scope of this paper, one special situation
can be considered that seems likely to be relatively favourable to the memetic variety.
This arises when the fitness function isdecomposable,in the sense that computing the
fitness of a solution given the fitness of another solution that is “close” to it (in the sense,
informally, of having much genetic material in common with it) is significantly less
computationally expensive than computing the fitness of a solution “from scratch”. In
the TSP, for example, computing the length of a tour that shares most of its edges with
another tour whose length is already known is very much cheaper than computing the
length of a general tour, so the fitness function is in that case decomposable. Contrariwise,
when solving a system of non-linear equations, for example to compute the flow of gas
through a pipe network, a small change in the chromosome can often have global effects
and therefore computing the fitness of a chromosome is made no easier by knowing that
of another similar chromosome. Given that in most real-world optimisation problems
calculation of fitness accounts for almost all the time spent in a genetic algorithm, it
seems likely that memetic algorithms will be at an advantage when the fitness function
is decomposable, provided that the moves it makes while hill-climbing are “small”.



3 Representation-Independent Operators

The principal complication that arises in defining representation-independent operators
is that some combinations of gene values may be incompatible. While this is most obvi-
ously a problem for recombination operators, it is also a serious consideration for other
move operators. As forma analysis (Radcliffe, 1991) has been developed, significant
efforts have been made to define representation-independent operators and to under-
stand and classify the kinds of representations that can arise in evolutionary search. In
particular, one representation-independent mutation operator—binomial minimal muta-
tion (BMM; Radcliffe, 1994b)—and three representation-independent recombination
operators—random respectful recombination (R�; Radcliffe, 1991), random transmit-
ting recombination (RTR; Radcliffe, 1992), and random assorting recombination (RAR;
Radcliffe, 1994a)—have been developed. It is not necessary to revisit all of these for
the purposes of this paper, but it is necessary to define some recombination operator
and some mutation operator. BMM and RAR will therefore be reviewed briefly in
sections 3.2 and 3.3, after which, in section 3.4, a further representation-independent
recombination operator will be introduced—generalisedN -point crossover (GNX). At-
tention will then be turned to generalised memetic operators, with a consideration
of representation-independentpatchingoperators in section 3.5 and representation-
independenthill-climbingin section 3.6. Before any of this can be achieved, however, it
is first necessary to introduce a distinction between two kinds of formal representations—
genetic and allelic.

3.1 Genetic Representations and Allelic Representations

The notions of genes and alleles are very familiar, but need to be defined rather carefully
for present purposes. A distinction will be drawn betweengeneticrepresentations and
allelic representations. A formal genetic representation is precisely a formal version
of the familiar string composed of genes, and should cause little confusion. It will be
assumed that a genetic representation consists of a string ofn genes,numbered� to
n, and that each gene takes on values from some (typically but not necessarily finite)
setAi. Thus in the case of a genetic representation, the representation space will be
assumed to have the form

C � A� �A� � 	 	 	 � An� (13)

so that a chromosome is formally a vector of gene values. The only complication with
respect to the typical case is that, as before, it will not be assumed that all members of
C correspond to solutions in the search spaceS, so some combinations of gene values
may be “illegal”.

A formal allele in the context of a genetic representation will be considered to be an
ordered pair consisting of a gene and one of its possible values, so that a chromosomex�
�x�� x�� � � � � xn� has alleles��� x��� ��� x��� � � � � �n� xn�. This formulation of alleles, so
far from being new, was suggested in Holland (1975), albeit with different motivation.

There are situations in which a suitable genetic representation of the form described
above is not straightforwardly available. In such situations, it may be appropriate to



drop the requirement that genes be defined, working instead with anallelic represent-
ation (Radcliffe, 1994b). In such an allelic representation, instead of being a vector, a
chromosome is asetwhose elements are drawn from some universal setA. In order to
qualify as a formal allelic representation, all that is necessary is that the representation
function� of equation 1 be injective, as required previously, and thatC be a subset of
P�A�, whereP�A� denotes thepower set(set of all subsets) ofA. Again, there is no
requirement that all members ofC represent solutions inS.

More concretely, consider representations of the TSP based on edges (city-to-city
links). If these edges are considered to be directed, then a genetic representation is
arrived at simply by letting theith gene take the value of the city visited after cityi,
so that��� �� �� �� represents the tour that goes from city� to city �, to city �, to city �,
to city � (sic). If, however, the edges are considered to be undirected (so that the�–�
edge and the�–� edge are equivalent) it is no longer straightforward to identify genes,
because each city is connected to two others. In this case, one approach is simply to
let A be the set of all possible edges and represent a tour by the set of (undirected)
edges it contains. The tour represented by��� �� �� �� in the directed-edge representation
is then represented byf �–�, �–�, �–�, �–� g in the undirected edge representation,
where the edges have all been written with the lower-numbered city first the emphasize
their directionless nature.

It is obviously trivial to construct an allelic representation from a genetic represent-
ation by takingA to be the set of all alleles, so that (referring to equation 13)

A �
n�
i��

Ai� (14)

Under this scheme a solution is represented simply by its set of (formal) alleles, so that
��� �� �� �� in the directed edge representation gives rise tof��� ��� ��� ��� ��� ��� ��� ��g
in the allelic representation. This motivates the term “allelic representation”, and the
members ofA will henceforth be referred to as alleles whether they are alleles in the
sense of ordered pairs of gene values from a genetic representation or simply members
of a given setA used directly to construct an allelic representation.

It is only slightly less obvious that given an allelic representation it is also easy to
construct a genetic representation from it by creating for each member ofA a binary gene
that takes the value� if the (allelic) chromosome contains that allele and	 if it does not.
It should be noted, however, that such an induced genetic representation is very different
from the initial allelic representation, so much so that if an allelic representation is then
constructed from the (induced) genetic representation it will be quite different, in general,
from the original allelic representation. For this reason, most of the operators introduced
below are defined with respect to allelic representations, which allows them to be used
for (natural) allelic representations or genetic representations without complication.

To reduce possible confusion, genetic chromosomes will be denoted with lower case
lettersx� y� z and allelic chromosomes will take upper case lettersX�Y� Z.

3.2 Binomial Minimal Mutation (BMM)

In a general representation it will often not be possible to use standard gene-wise
mutation because the new allele chosen may well be incompatible with other alleles in



the chromosome. For convenience it will here be assumed that chromosomes have a fixed
numbern of alleles, though it is simple to relax this restriction. Allelic representations
will be considered, so that a chromosome will be taken to be a set of exactlyn alleles
fromA. A distance measure,D, between two chromosomes can then be introduced, and
will be taken to be the number of alleles present in one chromosome but not the other:

D�X�Y �
�

�n� jX 
 Y j� (15)

Y will be said to be aminimal mutationof X if and only if there is no other
chromosome inC closer thanY to X with respect toD. Thus the setMD�X� of
minimal mutations ofX is given by

MD�X� �
�
Y � C

�� �Z � C r fXg � D�X�Y � � D�X�Z�
�
� (16)

wherer denotes set subtraction. For example, in the undirected edge representation for
the TSP, any tour that can be constructed from another by reversing some section of it
is one of its minimal mutations, because reversing a section involves breaking only two
edges and there is no pair of tours that differ by only one edge (figure 2).
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Fig. 2. In the undirected edge representation, the left-hand tour isf �–�, �–�, �–�, �–�, �–�, �–�,
�–�, �–� g and the right-hand tour is represented byf �–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� g.
In this representation, these two tours are minimal mutations of each other, because they differ
by exactly two edges and no pair of distinct tours, in this representation, differ by fewer than two
edges.

Thebinomialminimal mutationoperator (BMM) takes a single parameterpm, which
specifies the probability of performing each possible minimal mutation. A numberk of
mutations to perform is then selected from the binomial distributionB�n� pm�, where
n, as above, is the number of alleles in each chromosome. This choice ensures that in
the case of orthogonal representations BMM’s behaviour mimics that of conventional
gene-wise mutation. A sequence ofk chromosomes is generated, each of which is a
minimal mutation of the previous, the first in the sequence being the chromosome to be
mutated and the last being the resultant chromosome. Thus if


M � C �� C (17)

is a stochastic operator that returns a randomly (uniformly) chosen member ofMD�X�,
BMM is its kth iterate:

BMM�X� pm�
�

� 
Mk�X�� (18)



where
k � B�n� pm�� (19)

Note that this operator does not exclude the possibilitythat subsequent mutations reverse
earlier ones, but in practice the likelihood of this is low for small values ofpm. (In the case
of orthogonal representations, this is the only difference between BMMand conventional
gene-wise mutation.) Note also that this operator is really only appropriate provided
that any (legal) point in the representation space can be reached by a finite sequence
of minimal mutations from any other point, so that BMM satisfies the requirements of
ergodicity (Radcliffe, 1991).

3.3 Random Assorting Recombination (RAR)

Random assorting recombination (RARw) may be viewed as a generalisation of uniform
crossover, though this was not its genesis. Informally, it proceeds to choose alleles from
those of the parents, inserting them in the child when it can, and discarding them
otherwise. If the parents’ alleles become exhausted before the child is fully specified,
its remaining alleles are set either at random (from among the legal combinations) or by
some form ofpatching.As with uniform crossover, locus has no effect on the likelihood
that a group of alleles will be inherited, and—neglecting the fact that alleles from one
parent are known to be compatible, whereas those from different parents may not be—
the number of alleles taken from each parent is binomially distributed. Indeed, in the
limit of orthogonal genetic representations (those in which all allele patterns are legal)
RARw reduces to uniform crossover (with parameter half).

RARw takes a parameterw that specifies a relative weighting between alleles com-
mon to the parents and those that are present only in one. RARw�X�Y � begins by
assigning to each allelea � X � Y a weightW �a� given by

W �a� �

�
w� if a � X 
 Y�
�� otherwise.

(20)

It then initialises an empty childZ� � � and selects an allelea� fromG�
�

�X �Y , with
probability proportional to its weight. This allele is added to the proto-child to formZ �.
The following process is then repeated for steps indexed byi:

Repeat untilGi � �:

1. LetGi
�

�Gi�� r ai.
2. Choose a new alleleai fromGi with probabilities proportional to the weights of the

alleles inGi.

3. LetZi
�

�

�
Zi�� � faig� if ai is compatible with those inZi��,
Zi��� otherwise.

4. i
 i� �.

In step 3 above, “compatible” means that there exists a solution inS whose represent-
ative inC has all the alleles inZi�� and alsoai.

At this stage it is possible that the child will be completely specified, but in general
this will not be the case. If it is not, a patching algorithm must be used to complete



the child. The most general way to achieve this is to select randomly (uniformly) from
the chromosomes that include all the alleles in the proto-child constructed thus far.
Section 3.5 introduces more sophisticated memetic patching operators.

3.4 Generalised N-point Crossover (GNX)

In constructing a generalised form ofN -pointcrossover, it is convenient to consider only
genetic representations. The difficulty in applying conventional crossover operators is
that not all combinations of gene values are legal. LetL � f��� ��� � � � � �Ng be a set
of cross points, with	 � �� � �� � 	 	 	 � �N � n. This breaks a parent (genetic)
chromosomex intoN � � segments

�x�� x�� � � � � x������ �x�� � x����� � � � � x������ � � � � �x�N � x�N��� � � � � xn�� (21)

and breaks up the second parenty into corresponding segments.
GNX proceeds by picking a random order to visit theN�� segments from alternate

parents, and within each segment “tests” each allele in a random order. An allele is
“tested” by seeing whether it can be placed in the child—whether it is compatible
with those alleles that have already been placed in it. If compatible, the new allele is
inserted, otherwise it is discarded. Because in general after this process has terminated
the child will still be incomplete, the process is then repeated with the alternating
untested segments from the parents, again visiting these in a random order and testing
the alleles within them in random sequence. If the child is still incomplete after this, the
child is completed at random or by patching in the same way as for RAR. The general
pattern of progress of GNX is shown in figure 3.

First Parent

Second Parent

‘‘Normal Crossover’’

Final patched child

‘‘Complementary Genes’’

Fig. 3. GNX first copiesgenevalue from alternating segmentsof the parent chromosomes,visiting
the segments and testing the genes within these segments in a random order. Gene values are
copied to the child only if they are compatible with those already present. For genes not able
to be assigned by this process, alleles from the unused (complementary) segments of the parent
genomes are then tested, again in random sequence, for inclusion. Genes still not assigned after
this processare assignedeither at random, from the set of legal combinations, or by some heuristic
or other patching procedure.
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Fig. 4. Two parent tours, one possible partial child they can produce under GNX, and
an empty grid for the reader to use while following through the example.

An example using the TSP may help to clarify this. In order to follow this example,
the reader may find it helpful to try connecting up the “empty” tour in figure 4 to un-
derstand the edge acceptances and rejections. Consider the directed edge representation
for the TSP and G2X with cross points� and� with parents as shown in figure 4 and
given by

x � ��� �� � j 
� �� � j �� ���
y � ��� �� � j �� �� � j �� 
��

(22)

(Recall that in this representation theith gene represents a directed edge from cityi to
city xi.)

Suppose the permutation of the segments chosen is��� �� ��. Then the third segment
of x (visited first) will be inserted whole, giving edges� � � and � � � (or the
proto-child� � � � � � � �� ��). Then alleles in segment� from y will be tested
in a random order, say
� �� �� �� �� � and the first and third (in this case) will be
accepted, giving the proto-child� � � � �� �� � �� ��. The first segment ofx is then
tested, and the edges�� � and�� � will be accepted giving��� �� � �� �� � �� ��.
This completes the first phase.

The untested segments are then visited in random order, say first�
� �� �� from x,
then��� �� �� from y, and finally��� 
� from y. During this process only the edge�� �
will be accepted, giving the proto-child��� �� � �� �� �� �� ��.

Since this child is still incomplete, it must be patched. In this case however, only
one legal chromosome (with directed edges) has the required allele pattern, namely
��� �� 
� �� �� �� ����, so it would be the result of the cross.

3.5 Patching by Forma Completion

Both RAR and GNX produce (in general) partially-specified children that then need to
be completed in some manner. In the case of GNX, it is reasonably natural to think of
the partially completed child as a schema. In the case of RAR (which works with allelic
representations) this is less natural, but a child is specified precisely by a set of alleles
it should contain, and such a specification qualifies as aforma—a set of chromosomes
sharing certain alleles. A schema may be viewed as a special case of a forma, applicable
to the case of genetic representations. The question that arises for both RAR and GNX
is thus how to choose a child from a given forma. The “default” method is to choose



one randomly but two other methods of patching (or “completing”) formae to produce
children will be considered.

One option is to choose the best solution in the forma. In general, this would be
prohibitively expensive, but if the number of unspecified alleles were small and the
fitness function were decomposable this method can reasonably be considered. This
method will be calledglobally optimal forma completion.

A more practical method in many circumstances is to find a local optimum within
the forma. Withlocally optimal forma completion,this is achieved by completing the
forma at random and then testing minimal mutations that remain within it in sequence,
accepting any that are better. This process continues until there is no minimal mutation
within the forma that is better than the current solution.

3.6 Allelic Hill-Climbing

In section 2.1, a hill-climber (with respect to a move operatorQ) was defined to be any
operatorH having the functional form given in equation 6:

H � C � KH �� CQ� (� bis)

It is easy to construct a hill-climber fromQ by repeatedly applyingQ to the chromo-
some to be optimised, cycling through all the control parameters fromKQ. There is
considerable freedom in exactly how such a hill-climber operates. In particular, there
are many ways to decide when to accept a move and in which order to cycle through
the control parameters. The hill-climber constructed here will begreedy,that is, it will
accept any improvement generated by the operator immediately (and will never back-
track), as opposed, for example, to testing all control parameters and then accepting the
move that generates the biggest improvement.

The order in which to test the control parameters inKQ is more open. Any order
will suffice provided that all parameters are tested (preferably without repetition) but
a fixed order will afford the operator considerably less freedom than a random order.
Testing the parameters in a totally random order (excluding only repetition) is by far
the most appealing theoretically, and will almost certainly show the best performance
because it minimises the correlations between applications ofH. In practice, however,
this requires the generation of a very large number of (pseudo-) random numbers, and
maintenance of a list of the moves that have been tested (or of those that remain to be
tried). Nevertheless, this form of hill-climbing is sufficiently important to be named,
and will be referred to asideal greedy hill-climbing.

Many compromises between a totally random and a fixed order of samplingKQ
across applications ofQ are possible. Two in particular will be considered. The first
is to construct a random permutation of the control parameters toQ when the hill-
climber is invoked, and to sample these in sequence. When an application ofQ yields an
improvement (and is therefore accepted), a new starting point within the permuted values
is chosen, but the parameters are then sampled in the same order. This scheme will be
calledrotated cyclic greedy hill-climbing.A minor augmentation of this scheme involves
also exchanging a randomly chosen pair of control parameters in the permutation when
a move is accepted. This scheme will be calledrotated transposed cyclic greedy hill-
climbing.



For the purposes of the formal memetic algorithm that is the subject of this paper,
the move operator defining local optimality will be minimal mutation (
M).

4 Empirical Setting: Application to the TSP

Earlier sections having constructed the formal components required for a memetic
algorithm, the present section seeks to construct an instantiation for comparison with
its genetic counterpart and for simple experimentation with its coarser parameters.
The problem tackled will be the travelling sales-rep problem (TSP) because this has a
decomposable fitness function (and should therefore be favourable to memetic search),
is well-known, and is relatively hard for evolutionary techniques. Most studies of
large TSP instances have previously concluded that augmentation with local search is
essential, (e.g. Verhoevenet al., 1992; Gorges-Schleuter, 1989) and the aim here is not
to achieve good performance as such but rather to understand how well an unembellished
implementation of a formal memetic algorithm can work in this problem domain. For
this reason, a modest but non-trivial TSP instance is used for these experiments.

Previous studies by Whitleyet al. (1989) and Radcliffe (1994b) have provided
evidence, both theoretical and empirical, that undirected edges are a relatively suitable
basis for a representation of this problem, so the undirected edge representation discussed
above will be used. This provides a small difficulty, however, in that the undirected edge
representation is allelic, but it would be interesting to apply the GNX operator to this
problem. This difficulty can be overcome as follows. In the context of alignment for
crossover (only), the alleles (edges) making up a chromosomeX will be arranged in
the order they are visited in the tour, followed in a consistent direction, starting from
city �, to form a corresponding genetic chromosomex. This guarantees that every city
occurs exactly once at the “start” of an edge, and gives appropriate linkage to adjacent
edges. When brought together for crossover, the alleles in the second parent are then
re-ordered to align with those in the first parent, and this allows GNX to proceed sensibly
(figure 5). This borrows from the original view provided in Holland (1975) of crossover
as a locus-independent operator in the context of re-linking operators such as inversion.

It may seem as if the effect of this procedure is to manipulate the edges as directed,
but it is important to appreciate that this is not the case, for when an edge is tested for
compatibility with those in the proto-child, no account is taken of its direction. Thus the
direction of the tour affects only the order in which alleles from the parents are tested
for inclusion in the child, not the direction in which they occur in the child.

5 Results and Discussion

Empirical studies were undertaken using the Reproductive Plan Language RPL2 (Surry
& Radcliffe, 1994) running on super-scalar SPARC processors. The problem instance
used was the 100-city Krolak ‘C’ problem from TSPLIB (Reinelt, 1990). All exper-
iments used a panmictic population of size 100 with elitism, non-generational (“one-
at-a-time”) update, binary tournament selection with parameter	��, binary tournament
replacement with parameter	��, recombination with probability��	 and mutation prob-
ability pm of 	�	�. The weight used for RARwas��	, and the number of cross points used
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Parent 1
Unordered: f �–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� g
Ordered around tour: (�–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� )
Aligned “Chromosome”: ( 3, 2, 7, 8, 5, 4, 6, 1 )
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Parent 2
Unordered: f �–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� g
Ordered around tour: (�–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� )
Aligned with parent 1: (�–�, �–�, �–�, �–�, �–�, �–�, �–�, �–� )
Aligned “Chromosome”: ( 2, 4, 3, 8, 1, 6, 5, 7 )

Fig. 5. In order to use GNX, which requires ageneticrepresentation, with the undirected edge
representation, which isallelic, a special form of alignment must be performed, creating a
“pseudo-genetic representation”. Each parent is re-ordered so the the order and sense of the edges
are taken by following the tour around. The secondparent is then further re-ordered to align it with
the first. “Pseudo-genomes” that GNX can then manipulate are then created. Notice, however,
that the sense of an edge may be reversed by GNX when it inserts it in the child tour.

for GNX was�. Experiments were conducted using random and
M-opt (i.e. minimal-
mutation-based) patching, and also using Karp’s heuristic (Lawler, 1985), which is
specific to the TSP, for comparison. In the memetic experiments, rotated cyclic greedy
hill-climbingwas applied both to the initial populationand before children were inserted
into the population. Comparisons with random search and with repeated generation of
�-opt solutions are also shown. The results are shown in figures 6–8, and are on the
basis of “wall-clock” time. In all cases, the length of the best tour in the population
is plotted, normalised by the length of the optimum tour. Different algorithms are run
for different numbers of updates to give broadly comparable total run times. It should,
however, be noted that the implementations of the operators used are not tuned, and the
implementation of RPL2 itself is still under beta test at the time of writing, so times
should be taken as indicative rather than definitive.

As expected, given the decomposable nature of the evaluation function and the
large number of possible alleles for the TSP, the memetic algorithms all significantly
out-performed their genetic counterparts. Note particularly that with the exception of
the algorithms using Karp stitching, all implementations are direct instantiations of the
formal, representation-independent algorithms discussed above. The choice of patching
algorithm has a large effect on the genetic algorithms, with the
M-based and Karp
stitching providing substantially higher performance, whereas the choice of recombin-
ation operator has little effect. Conversely, for memetic search the choice of patching
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Fig. 6. The performance of genetic algorithms on the 100 city Krolak C TSP is shown. The
length of the best solution in the population (relative to the length of the optimal tour) is shown
as a function of wall-clock time. Error bars are not shown as they are smaller than the tick
marks. For comparison, random search (the top line) is shown, as is the performance achieved
by repeatedly generating�-opt solutions (bottom line). Notice that the genetic algorithm is
not remotely competitive with random search over�-opt solutions. Ticks are placed every 5
generations (500 updates) except for the non-adaptive searches. The ticks for random search over
�-opt solutions occur every 100 updates and those for pure random search every 2,500 updates.

algorithm has relatively little influence over performance, but here G2X is significantly
superior to RAR�. Notice also that genetic algorithms fail by a large margin to match
the performance achieved by repeatedly generating�-opt solutions.

The patching results can be understood since in the memetic case the local search
will be able to fix any poor patches, whereas this ability is not present in the genetic
algorithm. The results for the two recombination operators seem to indicate that for this
problem (in the context of the particular reproductive plans chosen) G2X is genuinely
superior to RAR�. The only cases in which this superiority is not exhibited are the
genetic runs with good patching, but here the results suggest that it is the patching
that is performing almost all the useful search, masking any distinction between the
recombination operators’ performances.

Clearly the problem instance chosen is rather easy for memetic search. (The other
Krolak 100 city problems have also been tested, with very similar results.) To emphasize
this point further, when a�-opt-based hill-climber was tested, an initial population of

	 solutions was found to contain two copies of the optimum. The problem was,
nevertheless, appropriate for this study given the level of difficulty it provided for genetic
search. Extensive efforts will now be made to tackle larger problems with memetic



0 50 100 150 200
Time (seconds)

1.00

1.01

1.02

1.03

Le
ng

th
 / 

O
pt

im
al

 L
en

gt
h

2-opt search
RAR, Random
GNX, Random
Inoculated GA

Fig. 7. The performance of memetic algorithms with random patching on the 100 city Krolak C
TSP is shown. The top line shows the performance of the best genetic algorithm (i.e. using G2X
and Karp stitching) inoculated with a starting population of randomly generated�-opt solutions.
The second highest line is the same as the bottom line of the previous graph, i.e. shows the
performance of random search over�-opt solutions, but notice the massively expanded scale on
they-axis. The bottom two lines show that G2X significantly out-performs RAR� on this problem.
Tick marks are shown every generation (100 updates) except in the case of the inoculated genetic
algorithm, where they are every five generations (500 updates), and error bars indicate standard
errors.

search, using structured population models, parallelism and still more sophisticated
operators; indeed, this work has already commenced.
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Fig. 8. The performance variation of memetic algorithms using G2X as a function of patching
method is shown for the 100 city Krolak C TSP. Notice that the effect of the patching is rather
small, in contrast to the large effect it hason the geneticalgorithm (figure 6), thoughKarp stitching
still performs best. A similar pattern emerges if RAR is used (not shown), but the performance for
each patching method is worse than with G2X. Ticks are shown every generation (100 updates)
and error bars indicate standard errors.
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